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Predicting Stock Returns Using a Variable
Order Markov Tree Model

Armin Shmilovici and Irad Ben-Gal

Abstract

The weak form of the Efficient Market Hypothesis (EMH) states that the current market price
fully reflects the information of past prices and rules out predictions based on price data alone. In
an efficient market, consistent prediction of the next outcome of a financial time series is problem-
atic because there are no reoccurring patterns that can be used for a reliable prediction.

This research offers an alternative test of the weak form of the EMH. It uses a universal pre-
diction algorithm based on the Variable Order Markov tree model to identify re-occurring patterns
in the data, constructs explanatory models, and predicts the next time-series outcome. Based on
these predictions, it rejects the EMH for certain stock markets while accepting it for other markets.

The weak form of the EMH is tested for four international stock exchanges: the German DAX
index; the American Dow-Jones30 index; the Austrian ATX index and the Danish KFX index.
The universal prediction algorithm is used with sliding windows of 50, 75, and 100 consecutive
daily returns for periods of up to 12 trading years. Statistically significant predictions are detected
for 17% to 81% of the ATX, KFX and DJ30 stock series for about 3% to 30% of the trading days.
A summary prediction analysis indicates that for a confidence level of 99% the more volatile Ger-
man (DAX) and American (DJ30) markets are indeed efficient. The algorithm detects periods of
potential market inefficiency in the ATX and KFX markets that may be exploited for obtaining
excess returns.
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1. Introduction  

The problem of predicting future values in a time series is related to different 
applications in various fields. In econometrics a relevant problem is predicting 
future values of a financial time-series, such as daily stock returns, or 
alternatively, evaluating the efficiency of different markets. In information theory 
a related problem is compressing a data sequence, where a better predictability 
results in a better compression rate of the data. In this paper we apply an 
information theory and data compression model to an econometrics problem. In 
particular, we use the Variable Order Markov tree model (abbreviated, 
henceforth, as the VOM tree) as a tool to predict the outcome of a financial time 
series and assess the efficiency of different stock markets. 

The VOM tree, known originally as the context tree (Rissanen, 1984), has 
been developed as a universal prediction model, aiming to predict an arbitrary 
sequence of data symbols that follow an unknown stationary stochastic process 
(Cover and Thomas, 1995). The VOM tree has been shown to attain the best 
asymptotic convergence rate to the optimal prediction (Ziv 2001, 2002). 
Therefore, the algorithm is particularly effective for predicting relatively short 
series, such as the ones available in economic data sets. 

The VOM tree is based on minimal a-priori statistical assumptions about the 
prediction function or about the distribution of the data values. It generalizes a 
wide variety of finite-memory models, such as Markov chain models. Unlike 
these models, the order of the VOM tree is not fixed and it is not defined a priori 
to its construction (the model’s learning phase). Instead, the structure of the model 
is a function of the particular observed patterns that are found to be statistically 
significant in the dataset. Intuitively speaking, The VOM tree contains all the 
significant patterns that are found in a given data sequence. Therefore, when 
recognizing the beginning of one of these patterns, one can use it to predict the 
future values of that sequence: a frequently occurring pattern is expected to 
generate a more reliable prediction than a pattern which was rarely observed. In 
the framework of financial series, a high prediction rate indicates potential market 
inefficiency, since when the start of a previously recurred pattern is recognized, 
the continuation of that pattern can be predicted. 

In data compression the predictability level of a sequence is directly 
associated with its randomness level (Cover, 1974). The more random the 
sequence is, it is said to have a higher (stochastic) complexity, a lower 
compression rate and the lower is the probability of a correct prediction of future 
values. A sequence with a low (stochastic) complexity is one in which recurring 
patterns can be detected – and thus can be used for compression. A measure for 
the predictability of a sequence is the size of the compressed data, often evaluated 
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by the inverse log-likelihood of the sequence based on the used predictive model1. 
We elaborate a bit more on these measures in appendix A to associate the readers 
with notions of predictability and compressibility, as used in information theory to 
which the VOM tree belongs.  

The Weak-form Efficient Market Hypothesis (abbreviated henceforth by 
EMH for simplicity) states that no excess returns can be consistently earned by 
using investment strategies that are based only on historical share prices. The 
EMH claims that these prices are the best, unbiased estimates of the value of the 
security that reflect all the available information. Accordingly, it rules out the 
possibility to consistently produce excess returns based on technical analysis 
alone. New information is discovered and quickly disseminated to reflect a 
change in the market price. Nonetheless, the EMH does not rule out short time-
lags, in which it is possible to identify stocks that are undervalued or overvalued 
by using new prediction models as we aim to do here. 

In this paper we apply the VOM tree to predict four different international 
stock exchanges: 30 stocks composing of the German DAX index, 30 stocks 
composing of the American Dow-Jones30 index, 20 stocks of the Austrian ATX 
index and 16 stocks of the Danish KFX index. The selection of these indices 
enables to compare financial markets of different volume and type. Our 
underlying hypothesis, which is supported by the empirical findings, was that in 
an efficient market a consistent “above random prediction” of a time series is not 
obtainable. However, in smaller and assumed less-efficient markets, using a new 
prediction model can potentially lead to "above random" financial gains, 
identifying periods of potential market inefficiency. 

The contribution of this paper is in the use of a universal prediction model, 
and particularly the VOM tree, for evaluating potential periods of market 
efficiencies. The use of a universal prediction algorithm for time-series 
forecasting is well known in information theory. Yet, sporadic publications tested 
market efficiencies via information theory measures (Chen and Tan, 1996, Chen 
and Tan, 1999, and Shmilovici et al., 2003, 2009). 

The paper is organized as follows. A literature review is given in Section 2. 
Section 3 introduces the VOM-tree algorithm as well as illustrative examples 
related to a financial time series. Section 4 details the conducted experiments by 
applying the VOM tree to four different markets. Section 5 outlines the main 
empirical results. Section 6 concludes with a short discussion.  

 

                                                 
1 This measure is also called the log-loss. The optimal average log-loss value represents the 
highest compression rate of the data that, for long sequences, attain the entropy lower bound 
(Begleiter et al., 2004). Thus, constructing a data-compression model that minimizes the average 
log-loss score of a sequence is equivalent to constructing a prediction model that maximizes the 
likelihood of a sequence. 
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2. Literature Review 

Along the years the EMH has been extensively studied by numerous research 
papers2. Thorough surveys, such as the ones by Fama (1991, 1998) and Hellstrom 
and Holmstrom (1998), present obscure conclusions regarding the validity of the 
EMH theory in practical settings. Many papers that support the EMH by empirical 
studies, use specific predictive models that are tested against a null hypothesis 
that share prices are unpredictable and uncorrelated. These papers often apply 
statistical tests to show the insignificant predictive power of the used models with 
respect to the null hypothesis. Yet, the question regarding the adequacy of the 
assumed prediction models and, as a result, the practical validity of the EMH 
remains unanswered in such cases. In other words, it remains unclear whether the 
null hypothesis is accepted due to the validity of the EMH or simply due to the 
inadequacy of the proposed prediction models. This is particularly true for 
predictive models that are assumed a priori based on theoretical reasons without 
having a clear support by the gathered data. In contrast, we claim that the use of 
predictive models with minimum a-priori assumptions, as proposed in this paper, 
reduces the risk of rejecting the EMH due to model inadequacy. 

Predicting stock prices is generally accepted to be a difficult task. In many 
cases, stock prices are assumed to follow a random-walk or a Martingale 
differential process most of the time (e.g., see Fama, 1998). Yet, the weak form of 
the EMH indicates that there might be short time-windows of market 
inefficiencies, where prices deviate from their regular behavior, providing 
opportunities for new forecasting techniques. This is the motivation for proposing 
a forecasting method in this paper. Bellgard (2002), Schwert (2003), and 
Timmermann and Granger (2004) demonstrated a time-lag between the 
introduction time of a new forecasting procedure (or a detection of a market 
anomaly) and the time when this procedure is no longer useful for prediction. The 
inefficiency time-lag is potentially longer for unique forecasting models since 
more time is required before its "self destruction". To summarize, successful 
predictions that are based on new models, such as neural networks, Bayesian 
networks, decision trees, Game-theoretic approach (Shafer and Vovk, 2001) and 
in this paper the VOM tree model, do not contradict the EMH: they can be found 
affective for a short time period, as it takes time for the trading community to 
assimilate these new exposed methods  and eliminate the inefficiency (Tsibouris 
and Zeidenberg, 1995, Baetaens et al., 1996).  

The challenge of predicting sequence of values (symbols) is in the essence of 
information theory since the early days of the field (Shannon, 1951). Information 
theory uses statistical prediction to solve problems, such as data compression 

                                                 
2On 28/6/11 the SSRN Electronic Paper Collection (ssrn.com) contained 8036 records with the 
JEL G14 classification 
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(Cover and Thomas, 1995), gambling strategies (Cover, 1974) and sequential 
decision making (e.g., Merhav and Feder, 1993). The theory associates the 
predictability level of a stochastic process to its stochastic complexity, a measure 
that quantifies the amount of information stored in a stochastic sequence (e.g., 
Rissanen, 1984, 1989, Merhav and Feder, 1998). In other words, the information 
content in a sequence can be measured by how well it is compressed. Based on 
the lossless source-coding theorem, not all sequences are compressible, however, 
the longer the sequence, the lower is the probability that it is incompressible (Li 
and Vitanyi, 1997). Universal compression methods (Ziv and Lempel, 1978, 
Feder et al., 1992) have been developed to compress an arbitrary sequence of 
symbols generated by an unknown stochastic process. These methods construct a 
predictive model of the process, estimating the probabilities of various sequences 
of symbols. They assign short codes to higher probability (frequently re-
occurring) sequences and longer codes to lower-probability sequences and by that 
compress the data (e.g., jpeg image compression). It is known that for long 
sequences, the universal coding approaches the optimal compression rate, which 
is measured by the entropy of the sequence, even without having prior knowledge 
on the generating stochastic process. This is the reason why the compression rate 
of a stochastic process is closely related to its predictability level. Nonetheless, 
the significance of the stochastic complexity theory, which was well recognized in 
many fields, such as data-compression (Rissanen, 1983), machine learning 
(Weinberger et al., 1995), statistical process control (Ben-Gal et al., 2003), text 
clustering (Vert, 2001) and statistics and bioinformatics (Buhlmann and Wyner, 
1999, Orlov et al. 2002) has not been fully assimilated in financial econometrics. 
This gap motivates us to apply a universal prediction model, such as the VOM 
tree that we are using, in an empirical study, where the stochastic processes 
represent stock prices over time. 

The idea that an efficient market should have a high stochastic complexity 
and vice versa was first studied by Chen and Tan (1996). The authors tested an 
EMH hypothesis based on the stochastic complexity of financial time-series by 
using a binary Markov model of order one for prediction. Chen and Tan (1999) 
studied the effect of the window size on the stochastic complexity measure of 
different financial series by using ARMA modeling. They concluded that signals 
in financial series are often brief (e.g., following the news of a fore coming 
business deal) and therefore, using shorter window size is more advantageous for 
prediction purpose. The generalized VOM tree model (Ben-Gal et al., 2003) was 
later used by Shmilovici et al. (2003) for the compression of financial time-series. 
Shmilovici et al. (2009) applied the VOM tree to analyze the intra-day FOREX 
time-series, but failed to generate profitable trading strategies of excess returns. In 
this paper we follow all these works with the distinction that the VOM tree 
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models are used here for prediction of stock market data and for an empirical 
comparative test of the EMH among different stock markets. 
 

3. The VOM Tree Model 

In this section we describe the VOM tree model, outline its construction algorithm 
and exemplify how it can be used for prediction. We later use this model for the 
prediction of daily stock returns. The VOM tree model belongs to a set of 
prediction models in the field of information theory. In appendix A we sketched 
some of these known approaches that are used in information theory for the 
prediction of finite-alphabet sequences.  

3.1 Prediction by the VOM tree 
The Variable-Order Markov (VOM) tree can be viewed as a data structure which 
is used to store the (conditional) probability parameters of the different symbols 
conditioned on their (prefix) contexts (Ben-Gal et al., 2003). In our case, the 
symbols are binary, representing either a "Gain" ('G') or a "Loss" ('L') in a 
consecutive sequence of daily stock returns. The tree assigns a context (of past 
gains and losses) for each symbol in the sequence, depending on its position in the 
tree. It has a root node on top, from which the branches are developed 
downwards. In the binary case, each node has at most |A|=2 descendent nodes 
with differently labelled edges: either a past "Gain" or a past "Loss". Each node in 
the VOM tree contains |A| conditional probability parameters of symbols (Gain or 
Loss) given their context (past Gains and Loses), which is represented by the 
reversed path from that node to the tree root (see Ben-Gal et al., 2003). Thus 
these conditional distributions of symbols depend on contexts of varying lengths. 

Consider, for example, the VOM tree in Figure 1 which represents a typical 
structure based on 50 consecutive daily stock returns. The probability for a gain 
(loss) is given by the left (right) component in each node respectively. For 
example, in the tree root (origin node) the unconditional probability for a gain or a 
loss in this sequence is 0.6 or 0.4 respectively. If the return in the previous day 
was a 'loss', the same probability distribution can be applied – since there is no 
descendent node from the root that is labeled by a 'loss'. However, the conditional 
probability distribution for a gain or a loss, conditioning on a 'gain' in the previous 
day changes to 0.48 and 0.52 respectively (edge 1). Similarly, if it is known that 
the last two trade days ended with gains (edge 1 and edge 2), then the conditional 
probability for a daily loss is 0.75. On the other hand, if it is known that 
yesterday's trade ended with a gain (edge 1) and the previous day ended with a 
loss (edge 3), the conditional probability for a daily loss is 0.87. Note that this is 
the higher probability in the tree that might indicate a more reliable prediction 
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than the Bernoulli based probability of 0.6 in the origin node. The imbalance in 
the VOM tree reflects the fact that some past scenarios do not affect future 
prediction, while others do. 

In general, the tree edges are numbered and represent past gains (to the left) 
or past losses (to the right). The lower (deeper) edge in the tree, the longer is the 
conditioning context that is used. Accordingly, each node contains the conditional 
probabilities of a possible gain or loss given the previous returns, as indicated by 
branch to that node. 

(0.48,0.52)

(0.25,0.75) (0.13,0.87)

1: G ain

2: Gain 3: Loss

(0.6,0.4)

 
Figure 1: An example of a VOM tree 

Note that the VOM tree is not necessarily balanced (i.e., not all the branches need 
to be of the same length) nor complete (i.e., not all the nodes need to have A  
descendents). This is the main difference between this variable order model and 
the conventional fixed-order Markov model that can be represented by a balanced 
and complete tree. Thus, the VOM tree model is more general than the Markov 
models since it enables to consider in one hand longer sequences while 
eliminating other contexts that are found insignificants. This flexibility is a key 
feature that improves the predictability of the model. Accordingly, we define a 
variable model order Lj that depends on the preceding symbols to position j. In 
other words, the order of the Markov model becomes a function of the context at 
each position.  

Once the VOM Tree is constructed the likelihood of a given sequence can be 
then computed by the product of the conditional probability components, each of 
which depends on variable order contexts:      

( ) ∏ =
−
−

−
− ⎟

⎠
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⎝
⎛ === N
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where the variable order L(xj-1,xj-2,…)=L is itself a function of the preceding 
symbols. An optimal value for Lj defines the shortest context for which the 
transition probability of symbol jx  is practically equal to the transition probability 
of that symbol given the context of maximal order L (Ben-Gal et al. 2003). Note 
that for the fixed-order Markov chain L(xj-1,xj-2,…)=L  for all xj, whereas, for the 
suggested variable-order Markov model, Lj≤ L, implying that some transition 
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probabilities of the Markov chains can be lumped together (e.g., Buhlmann and 
Wyner, 1999, Orlov and Potapov, 2000). 

The likelihood of a sequence given the VOM tree depends on the contexts of 
a variable-order Lj. For example, in the VOM tree in Figure 1, the likelihood of, 
say, the sequence "GGGLLG" is computed as follows: 
P(GGGLLG)=P(G)×P(G|G)×P(G|GG)×P(L|GGG)×P(L|GGGL)×P(G|GGGLL) = 
P(G)×P(G|G)×P(G|GG)×P(L|GG)×P(L)×P(G)=0.6×0.48×0.25×0.75×0.4×0.6. 
Using these likelihood computations different predictions can be made.  

3.2 Construction of the VOM tree  
The construction of the VOM tree contains two stages (for detailed description, 
see Ben-Gal et al., 2003). In the first stage, the tree is grown from its origin (root) 
node downwards based on the training sequence 0

NX− . During this stage, counts 
in each node are updated to represent the conditional frequency of the symbols 
given their contexts. The counts denote the number of instances where symbol xi 
follows the context 1

1 max
−
−−

i
KiX  in the training sequence 0

NX − . Kmax is the initial 
tree depth prior to any pruning, and it is determined by practical memory capacity 
constraints, as well as available training data. In our case Kmax=10. 

In the second stage, the tree branches are pruned to obtain its variable-lengths 
structure. The pruning is based on the Kullback-Leibler (KL) divergence for the 
conditional probabilities of symbols between a descendent node and its parent 
node. If the KL divergence measure is smaller than a pre-selected pruning 
threshold, the descendent node is pruned. A small KL divergence implies that 
there is no significant change in the symbols' distribution when using the reduced 
order of the model, or in other words, that the larger model order, which is 
represented by the descendent node, does not add much information and can be 
pruned without affecting the prediction probability. The pruning level is 
controlled by the pruning coefficient C. 

Once the VOM tree is pruned, a pseudo-count is added to all the tree counts 
to compensate for unobserved subsequences with zero counts in the tree (see Ben-
Gal et al., 2003). Finally, the smoothed (normalized) counts in the pruned tree are 
used to estimate the conditional probability )|( 1

0
−i

i XxP  for prediction or 
compression purposes.  

The outline of the context-tree algorithm, which we use in this paper, is given 
in Figure 2 below. The complete details of the algorithm, which has a linear 
complexity in the sequence length N, can be found in Ben-Gal et al. (2003). 

 The pruned VOM tree model can be represented by the joint distribution of 
contexts (leaves) and their symbols. The size of the final context tree model is 
determined by the value of the pruning coefficient C. Thus, if C=0 the tree is left 
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unpruned and often contains too many parameters (thus often it is over-fitted). 
Rissanen (1983) recommended a default pruning coefficient value of C=2 for a 
good compression rate. Our experience with financial time series (including those 
analyzed in Shmilovici et al., 2003) indicates that a value of C=0.5 usually results 
in better predictions.  

VOM Tree growing stage:  

Step 0. Start with the root as the initial tree, with all symbol counts equal to zero. 

Step 1. Counter update: Recursively, having constructed the current tree from the current 
sequence, read the next symbol xi in the sequence. Traverse the tree along the path defined by 
the context 0

kX−  and increment the count of the symbol xi in all nodes until the deepest node is 
reached. Each symbol xi belongs to an alphabet A with cardinality |A| 

Step 2. Tree growth:  If the last updated count is at least 1 and the depth of the node is k<Kmax 
where Kmax ( ) ( )AN log1log +≤ , create a new node of depth 1+= kk  and initialize all 
symbol counts to zero except for the symbol xi whose count is set to 1. Kmax is used to reduce 
the computation time and the memory requirements during run-time. For a modern desktop 
computers, Kmax =10 can be well tolerated. 

VOM Tree pruning stage:  

Step 3. Estimate the KL divergence of the distribution of symbols between a leaf of depth 
k(leaf) and its parent node of depth k(leaf)-1 : 

( ) ( )
( )∑

∈
−

−−

−
−−

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

AX
i

leafkii

i
leafkiii

leafkii
i XxQ

XxQ
XxQleafKL

1
1)(

1
)(

2
1

)( log)(  

Repeat for all leaves.

 

( )1| −
−

i
kii XxQ  is an estimate of ( )1| −

−
i

kii XxP . 

Step 4. Prune the leaf if ( ) ( )1log1)( ++≥ NACleafKL , where the logarithm is to the base 2, 
and the default value for the pruning coefficient is C=0.5. Practically, this pruning step keeps 
the leaf only if its symbols' distribution is sufficiently different from the symbols' distribution 
in its parent node. 

Step 5. If all leaves are left unpruned – stop. Otherwise, go back to step 3 and repeat for all the 
pruned leaves. 

Figure 2. Outline of the construction of the VOM tree 

Like other machine learning techniques, such as decision trees (that are also 
pruned based on the divergence of probabilities between a parent node and its 
descendents), the pruning process is intended to avoid over-fitting (bias) of the 
model to the training sequence (Ben-Gal et al., 2003). Yet, as demonstrated in 
Figure 1, longer contexts (deeper leaves in the tree) can indicate a potentially 
more reliable prediction (concentration of the probability mass in a single symbol 
instead of the equiprobable symbols in the origin node). Thus, if the pruning 
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process is too aggressive (by selecting a high value for C), it removes contexts 
that correspond with the occurrences of events that generated a small number of 
counts, smoothes out their predictions and reduces the overall prediction level. 

3.3 The Reliability threshold  
In long financial series where the long-term probability of a positive (and 

a negative) daily return fluctuates around 0.5, obtaining a deep VOM tree leads 
towards a potentially more reliable prediction. Yet, obtaining a deeper tree is not 
enough to guarantee a reliable prediction. A current daily prediction is expected 
to be more reliable only if the current context which is used for prediction points 
to a deep leaf in the tree. Since practically most contexts do not point to a deep 
leaf (and since most trees in a noisy and random sequence are rather flat), the 
predictions are expected to be reliable only for a fraction of the time 
(alternatively, one can say that such a tree structure reflects the fact that the 
market is efficient most of the time). In our experiments, that are presented in the 
next section, we decided to carry out a prediction only for instances for which the 
prediction reliability (probability parameter) is above a certain threshold. For 
example, referring to the tree in Figure 1 and defining a reliability threshold of 
0.65, no prediction can be made if one knows only that yesterday's trade ended 
with a positive return. The reason is that in the relevant node following edge 1 the 
prediction reliability is 0.52, which is below the defined reliability threshold. 

 
4. Numerical Experiments 
4.1. Assumptions and preprocessing  

The analysis in this section is based on the following two assumptions. First, 
that the VOM tree can be used for the prediction of recurring patterns in financial 
series, if these patterns do exist. Second, that there is a probability that a random 
series – such as a financial series from an efficient market – may contain some 
recurring patterns. We measure the predictability of the series by the fraction of 
correct predictions when using the VOM tree, and compare it to the fraction of 
correct predictions that is expected in a random sequence. We use this comparison 
to analyze the efficiencies of several markets. In particular, the performed 
experiments test the following null hypothesis with a 95% confidence level: 

H0: Prediction of observations in the series is random – the market is 
efficient. 

H1: Prediction of observations in the series is above random – the market is 
inefficient. 

Before running the test, some preprocessing issues as well as some of the VOM 
tree parameters must be specified. 
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� The series' daily returns have to be discretized a priori since the VOM tree 
handles discrete data. In particular, we test the null hypothesis H0 based on a 
binary prediction trend with positive returns (gains) or negative returns 
(losses). Note that to support a profit-gain policy, a ternary alphabet (e.g., 
positive, negative, stable) or a higher alphabet is probably preferable. In this 
paper we start with a simple binary discretization.  

� The series length, N, has to be specified by the user. The effect of the window 
size on the predictability measure is itself a potential direction of research 
(e.g., see Chen and Tan, 1999). It is easier to detect statistically significant 
patterns in a longer series, yet, the VOM tree is considered efficient enough 
to operate on short series as well (Ziv 2002). In the following experiments we 
focus on sliding windows of 50, 75 and 100 consecutive trading days (about 
2-5 months). That is, we try to predict the 51th, the 76th and the 101th daily 
return given the respective window of past observations. Note that our 
implementation of the VOM tree algorithm is not adaptive (e.g., Federovsky 
et al., 1998). A series that is "too long" might capture a non-stationary change 
in the trading system or a "trading noise". In these cases, the predictor might 
generate a lower reliability prediction. 

� The VOM tree algorithm that is written in the MATLAB script language 
must be calibrated – especially the pruning coefficient C that determines the 
required number of repetitions of a pattern in order for it to be represented in 
the VOM tree. The value of the pruning coefficient depends on the series 
length, the alphabet size and the series type (see Ben-Gal et al., 2003). 
Tuning experiments with various values of pruning coefficient in the range 

]0.4,...,25.0[∈C  revealed that the pruning coefficient that yields the highest 
prediction performance for the binary series of the four different stocks 
markets is C=0.5. 

4.2 Performance Measures: Metrics for Testing  
The first performance measure we used is the Fraction of Correct Predictions 
Above the Reliability Threshold (FCPART). It is defined as the empirical count 
of the periods with correct prediction divided by the total number of observed 
periods. The observed periods are those for which one can rely on the VOM tree 
leaf to make a prediction above a predefined reliability threshold (such as leaf 2 in 
Figure 1). For example, let us consider N=2568 predictions from sliding windows 
of length 50 in the ATX-INDEX series in Table 3. In only 288 (11.21%) cases the 
relevant leaf of the VOM tree had a probability value above a reliability threshold 
of 0.65 that enabled making a prediction. Of those predictions, only 159 (55.21%) 
were found to be correct. Therefore, FCPART = 0.5521. 

The FCPART is compared against the ratio expected from a random 
Bernoulli process with parameter p=0.5. A normal approximation to the binomial 
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distribution with mean p=0.5 and standard deviation S.D. N
pp )1( −≈  is used to 

compute the single-sided 95% confidence intervals (with quantile Z1-0.05=1.645) 
for the fraction of correct predictions. For example, let us consider N=2568 
predictions from sliding windows of length 50 in the ATX-INDEX series. The 
standard deviation of the random process with the same length is equal to S.D. 

≈≈ ∗
2568

5.05.0 0.00987. This results in a single sided 95% threshold for random 
fraction of correct predictions which is equal to 0.5+1.645×0.00987=51.62%. 
Since the actual fraction of correct predictions in this ATX-INDEX series is 
50.86%, H0 cannot be rejected in this case. However, recall that it was found that 
for 11.21% of the predictions with a prediction reliability higher than 0.65, the 
fraction of correct predictions (the FCPART) is 55.21%. Repeating the above 
analysis, but this time with N=2568×0.1121=288 observations, results in 95% 
random threshold of 0.5+1.645×0.029463=54.85%. Therefore, in this case, H0 is 
rejected with a confidence level of 95%, implying that this prediction is not 
random. Moreover, note that a prediction success rate above 54% is often 
considered as satisfying for practical investment (Tsibouris and Zeidenberg, 1995, 
Baetaens et al., 1996) in the sense of covering (on the average) the "transaction 
costs" of the prediction. 

The second performance measure that we used is the aggregate prediction 
rate across a group of sequences, attempting to detect random flagging of 
predictable sequences. When testing multiple hypotheses simultaneously, one has 
to pay attention to the first type statistical errors. For example, consider the 20 
stock series that compose the ATX index: even if all series are random walk series 
with a confidence level of 95%, still there would be 20×0.05=1 stock on the 
average for which the random walk hypothesis will be rejected. Therefore, one 
cannot assure that such a series indicates "above random predictability”. In this 
context, a multiple testing correction, such as the traditional Bonferroni’s 
correction or the False Discovery Rate approach (Benjamini and Hochberg, 1995) 
can be implemented in future research. 

4.3 Testing the DJ, DAX, ATX, and KFX indices 
As indicated in Shmilovici et al. (2003), series from different financial markets 
can demonstrate quite a different behavior. In general, it is expected that high 
volume markets will behave differently than low volume markets. In this study, 
we collected data from four different stock markets: one with a large daily trade 
volume (the American market), one with a medium daily trade volume (the 
German market) and two with a low daily trade volume (the Austrian and the 
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Danish markets). During the period3 between 2/1/90 – 30/06/03 we considered the 
daily closing values4 of:  i) the 30 stocks that comprise of the German DAX stock 
index; ii) the 30 stocks that comprise of the American DJ30 stock index; iii) 20 of 
the stocks that comprise of the Austrian ATX stock index; and iv) 16 of the stocks 
that comprise of the Danish KFX stock index5. The predictions were performed in 
the following manner: 

� The daily returns were computed and each series was coded into a binary 
series according to the sign of the daily return (zero returns were coded 
identically to the negative returns due to transaction costs). 

� A VOM tree model was constructed for each running-length window of size 
50 (and, respectively, of sizes 75 and 100). 

�  The VOM tree model was then used to predict the trend on the 51th day (and, 
respectively, on the 76th and the 101th days). 

� The predicted trends were compared to the actual trends and statistics were 
collected in tables 1,2,3,4 for each stock and for each window length. The 
"TP rate" statistic was collected for all the predictions, 

� The same procedure was repeated for the predictions above the following 
reliability thresholds: 0.60, 0.65 and 0.70. A low reliability threshold such as 
0.60 can provide a sufficient number of trading days to implement a trading 
strategy, however, it is not expected to provide a sufficiently high FCPART 
(see appendix B). On the other hand, a high reliability threshold, such as 
0.70, can provide a high FCPART but not a sufficient number of trading days 
to implement a profitable trading strategy and reject H0 with a 95% 
confidence level. 

 
Figure 3 presents typical histograms of the number of trading days (for which 
predictions were generated) for two stocks based on different reliability 
thresholds. The histograms represent two stock series from the KFX market with 
running windows of length 100. The top figure – generated from the Coloplast B 
stock trend series – demonstrates a significant number of trading days with 
prediction reliability above the 0.60 threshold, namely, 39.22%; The bottom 
figure – generated from the Novo Nordisk B stock trend series – demonstrates a 
limited number of trading days with prediction reliability above the 0.60 
threshold, namely, 12.76%. 

                                                 
3 Series shorter than two years were rejected. Data in some series is incomplete. We ignored the 
effect of the few missing values. 
4 Collected from Yahoo! Finance Investing, World Stock Exchanges 
http://uk.biz.yahoo.com/uk_world.html 
5Index stock can be very volatile. For example since companies close down. We chose stocks for 
which most of the data was available. 
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Figure 3: Histograms of the number of trading days (predicted days) for different reliability 

thresholds. The Series of length 100 were taken from the KFX stock market. Top - the 
Coloplast B stock trend series; Bottom - the Novo Nordisk B stock trend series 

 
Tables 1, 2, 3 and 4 present, respectively, the results for the stocks composing 

the KFX, ATX, DAX and DJ30 indices. The first column for each stock (in each 
table, respectively) shows the stock name. The second column for each stock, 
describes the initial day from which the data was collected and the number of 
predictions made from running windows of length 50 (in order to obtain the 
number of available predictions for running windows of length 75 and 100, one 
should reduce this number by 25 and by 50 respectively). The third column 
describes the FCPART for running windows of length 50 (respectively in 
columns 6 and 9 for sliding windows of lengths 75 and 100). The third column 
presents the FCPART for predictions with a reliability threshold of 0.60, and the 
percentage of the prediction days that satisfy this reliability condition 
(respectively the 6th and 8th columns for sliding windows of lengths 75 and 100). 
The 4th and 5th columns present respectively the FCPART for those predictions 
with reliability thresholds of 0.65 and 0.70, and the percentage of the prediction 
days that satisfy these conditions (respectively, in columns 7, 8 and 10, 11 for 
running windows of lengths 75 and 100). Table entries in bold represent series for 
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which H0 is rejected with a confidence level of 95%, thus, leading to a conclusion 
that the prediction is not random and rejecting H0.  

Table 1: Predictability measures for 16 of the stocks composing the KFX top 20 index of 
Kopenhagen, Denmark. (Bold numbers are above the 95% confidence) 

Stock Name\ 
window size 50 75 100 

 
 
Name 
 

Start Period 
(#predictio
n days for 

series 
length 50) 

% predictability above 
threshold 

% samples above 
threshold used for 

prediction 

% predictability 
above threshold 

% samples above 
threshold used for 

prediction 

% predictability 
above threshold 

% samples above 
threshold used for 

prediction 
0.60 0.65 0.70 0.60 0.65 0.70 0.60 0.65 0.70 

KFX TOP20 
INDEX 

26-Jan-93 
(2548) 

51.93 
21.31 

56.33 
8.99 

48.21 
2.20 

55.53 
18.99 

54.67 
5.95 

37.78
1.78 

56.13
14.05

51.0 
4.0 

45.83 
0.96 

CARLSBER
G B 

2-Jan-90 
(3051) 

55.87 
29.86 

56.18 
16.45 

57.99 
7.18 

58.47 
26.73 

60.89 
12.59 

66.46
5.22 

58.76
23.19

61.81 
9.60 

63.16 
3.80 

COLOPLAS
T B 

2-Jan-90 
(3186) 

61.12 
38.51 

64.89 
21.81 

67.34 
13.94 

60.81 
37.30 

64.33 
19.87 

67.42
12.62

61.54
39.22

62.56 
18.65 

64.02 
10.46 

DANSKE 
BANK 

2-Jan-90 
(3317) 

53.70 
27.28 

54.89 
14.17 

57.89 
5.73 

54.95 
20.57 

55.79 
10.24 

59.71
4.22 

55.39
16.74

61.09 
7.32 

61.32 
3.64 

DANISCO 2-Jan-90 
(3316) 

53.74 
26.60 

56.67 
15.59 

50.53 
5.67 

57.52 
24.25 

59.18 
11.09 

55.93
3.59 

57.34
20.45

59.04 
7.62 

46.48 
2.17 

DSV 2-Jan-90 
(2797) 

63.09 
51.91 

66.47 
30.50 

74.38 
17.16 

63.97 
49.46 

64.81 
28.50 

74.23
16.38

63.46
49.51

70.55 
22.50 

75.16 
17.15 

GROUP 4 
FALCK 

7-Apr-95 
(1991) 

50.96 
18.33 

52.05 
7.33 

52.54 
2.96 

46.21 
4.48 

34.09 
4.48 

35.48
1.58 

48.37 
7.88 

39.29 
1.44 

45.45 
0.57 

GN STORE 
NORD 

2-Jan-90 
(3214) 

55.89 
34.85 

55.59 
18.36 

55.14 
5.76 

55.78 
31.98 

57.23 
14.74 

54.70
2.67 

55.85
29.99

61.24 
9.70 

54.29 
2.21 

ISS 2-Jan-90 
(3314) 

53.40 
28.42 

52.20 
13.70 

52.67 
4.53 

54.51 
23.59 

54.73 
10.28 

55.75
3.98 

54.28
19.70

52.36 
5.85 

54.44 
2.76 

JYSKE 
BANK 

2-Jan-90 
(3299) 

58.10 
46.59 

60.25 
26.46 

63.03 
10.82 

60.11 
45.65 

62.39 
20.71 

65.17
10.17

60.39
42.35

63.60 
15.73 

62.83 
8.28 

H. 
LUNDBECK 

18-Jun-99 
(949) 

48.85 
18.34 

49.14 
12.22 

42.31 
5.48 

51.72 
15.69 

46.48 
7.68 

47.37
4.11 

44.68 
5.23 

100.0 
0.56 

100.0 
0.33 

MOELLER 
MAERSK A 

2-Jan-90 
(2197) 

59.81 
42.92 

61.71 
30.31 

61.64 
13.88 

61.05 
35.82 

62.89 
26.43 

62.70
14.69

62.35
35.63

65.31 
22.96 

61.81 
12.20 

MOELLER 
MAERSK B 

2-Jan-90 
(3153) 

54.72 
30.26 

55.46 
15.10 

56.52 
4.38 

54.36 
23.47 

54.82 
10.61 

54.43
2.53 

53.24 
19.92

55.00 
4.51 

55.56 
1.74 

NORDEA 2-May-00 
(725) 

51.96 
24.69 

42.11 
7.86 

44.44 
2.48 

46.84 
22.57 

39.13 
3.29 

45.45 
1.57 

53.03 
19.56

66.67 
1.78 

80.00 
0.74 

NEG MICON 14-Nov-95 
(1792) 

56.55 
39.17 

58.60 
20.76 

54.20 
7.31 

55.04 
36.50 

54.48 
16.41 

46.99
4.70 

54.91
32.72

55.13 
8.96 

57.14 
2.81 

NOVO 
NORDISK B 

2-Jan-90 
(3255) 

49.91 
17.60 

51.65 
10.23 

53.72 
5.78 

50.42 
14.74 

53.44 
8.11 

50.41
3.75 

55.01
12.76

48.66 
5.83 

52.11 
2.22 

TDC 11-May-94 
(2227) 

50.58 
23.35 

47.46 
10.60 

50.47 
4.80 

53.27 
18.76 

50.89 
5.09 

58.93
2.54 

55.50
17.55

51.22 
3.77 

52.38 
1.93 
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Table 2: Predictability measures for 20 of the stocks composing the ATX top 22 index of 
Vienna. (Bold numbers are above the 95% confidence) 

Stock Name\ window 
size 50 75 100 

 
 
Name 
 

Start 
Period 
(#predictio
n days for 
series 
length 50) 

% predictability 
above threshold 

% samples above 
threshold used for 

prediction 

% predictability 
above threshold 

% samples above 
threshold used for 

prediction 

% predictability 
above threshold 

% samples above 
threshold used for 

prediction 
0.60 0.65 0.70 0.60 0.65 0.70 0.60 0.65 0.70 

ATX-INDEX 
VIENNA 

11-Nov-92 
(2568) 

52.58
21.92

55.21 
11.21 

48.18 
4.28 

52.51 
16.48 

52.17
8.14 

52.17
2.71 

53.27 
12.15 

56.63 
3.30 

58.82 
1.35 

BWT AG 13-May-92 
(2489) 

56.52
33.27

54.83 
17.88 

57.14 
7.31 

55.52 
25.37 

59.58
15.46

56.67
7.31 

57.09 
20.54 

56.64 
11.73 

50.00 
3.85 

BBAG 
STAMM 

27-Apr-92 
(2697) 

52.42
26.03

53.28 
13.57 

52.02 
6.41 

50.58 
22.42 

52.43
9.99 

53.91
4.30 

52.11 
17.04 

45.69 
4.38 

52.17 
2.61 

SEMPERIT 
HDG 

20-Sep-95 
(1857) 

58.64
33.98

59.63 
17.34 

63.38 
7.65 

57.12 
29.15 

58.13
15.78

59.09
8.41 

57.75 
28.56 

58.71 
14.61 

54.41 
7.53 

VA TECH-
NOLOGIE 

25-May-94 
(2187) 

55.25
28.30

54.22 
15.18 

50.45 
5.08 

54.41 
24.14

52.86
10.50

48.48
3.05 

55.80 
18.95 

53.38 
6.22 

54.24 
2.76 

AUSTRIAN 
AIRL 

2-Jan-90 
(3274) 

57.75
29.57

59.14 
17.04 

54.50 
5.77 

57.18 
25.30 

60.37
11.73

60.40
4.59 

55.36 
22.58 

60.31 
7.97 

56.76 
3.44 

ERSTE 
BANK ST 

22-Nov-93 
(2260) 

67.11
40.22

70.77 
31.15 

72.79 
20.49 

67.53 
36.11 

70.40
27.96

73.05
21.74

70.95 
32.71 

72.96 
27.78 

72.69 
21.54 

OMV AG 21-May-91 
(2935) 

53.44
21.81

51.97 
13.83 

49.08 
5.55 

54.90 
15.09 

50.00
8.04 

54.22
2.85 

57.28 
18.58 

55.19 
6.34 

60.27 
2.53 

TELEKOM 
AUST 

21-Nov-00 
(583) 

48.94
16.12

50.00 
5.83 

47.83 
3.95 

36.96 
8.24 

42.31
4.66 

45.45
1.97 

52.38 
15.76 

52.63 
10.69 

49.15 
2.44 

VERBUND 19-Mar-90 
(3222) 

55.12
34.85

55.26 
16.51 

55.15 
5.12 

55.66 
27.37 

55.01
13.42

54.00
4.69 

54.12 
23.36 

55.26 
7.19 

56.67 
3.78 

EVN 6-May-91 
(2944) 

54.50
29.42

54.03 
15.76 

54.79 
6.39 

53.52 
23.36 

50.80
10.65

54.62
4.45 

55.41 
20.77 

55.61 
7.71 

52.78 
2.49 

PALFINGER 4-Jun-99 
(949) 

56.78
41.94

56.72 
28.24 

57.45 
9.91 

55.89 
39.50 

54.82
17.97

53.73
7.25 

55.59 
32.81 

54.46 
11.23 

71.88 
3.56 

UNIQA 
VERS. 

10-Dec-90 
(3001) 

63.07
63.88

64.06 
46.45 

65.52 
22.33 

62.84 
65.29 

64.04
43.92

63.96
22.38

62.69 
68.11 

62.97 
37.61 

61.68 
18.57 

FLUGHAFE
N WIEN 

15-Jun-92 
(2669) 

50.28
19.75

50.92 
10.23 

51.00 
3.75 

53.14 
16.87 

54.19
6.77 

66.04
2.00 

50.90 
14.93 

51.61 
4.73 

50.00 
1.45 

BOEHLER 
UDDEHOLM 

10-Apr-95 
(1967) 

50.00
12.20

50.82 
6.20 

53.41 
4.47 

47.71 
7.88 

53.06
5.05 

54.43
4.07 

56.62 
7.09 

59.57 
4.90 

63.49 
3.29 

GENERALI 
HDG 

2-Jan-91 
(3027) 

56.38
32.87

57.03 
21.61 

55.22 
8.85 

55.33 
29.08 

55.60
16.06

59.22
5.96 

57.25 
25.93 

56.47 
9.34 

56.60 
3.56 

RHI 2-Jan-90 
(3271) 

55.63
30.66

53.42 
14.31 

53.11 
5.41 

56.90 
26.80 

57.07
11.34

56.48
3.33 

55.60 
23.01 

55.46 
7.11 

56.70 
3.01 

VOESTALPIN
E 

9-Oct-95 
(1844) 

52.83
20.12

47.55 
7.75 

46.43 
3.04 

50.68 
16.05 

56.44
5.55 

51.22
2.25 

52.41 
10.42 

52.46 
3.40 

45.83 
1.34 

WIENERBER
GER 

2-Jan-90 
(3273) 

53.63
24.84

53.83 
11.18 

57.58 
4.03 

53.31 
2044 

52.40
7.70 

47.67
2.65 

54.43 
19.95 

49.49 
6.14 

50.70 
2.20 

BRAU UNION 15-Jul-93 
(2397) 

55.45
30.25

56.55 
18.15 

59.00 
8.34 

53.43 
29.51 

51.47
14.33

55.83
5.06 

57.49 
24.46 

57.47 
7.41 

57.81 
2.73 

MAYR 
MELNHOF 

22-Apr-94 
(2205) 

50.98
20.82

52.24 
11.11 

46.85 
5.03 

52.01 
15.96 

51.91
6.01 

56.25
2.94 

55.10 
11.37 

61.05 
4.41 

59.65 
2.65 

15Shmilovici and Ben-Gal: Predicting Stock Returns Using a Variable Order Markov Tree Model

Published by De Gruyter, 2012
Unauthenticated

Download Date | 6/18/16 9:00 AM



 

 

 
Each line in Table 5 presents the total percentage of the bold cells in tables 1, 2, 3 
and 4 respectively for which H0 is rejected. For example, when considering the 
KFX stocks with running windows of length 50 and a reliability threshold of 0.70, 
one can note that 6 out of 16 stocks (37.5%) were flagged as predictable stocks 
“above random”. Using the binomial distribution with parameters 05.0ˆ =p  and 
N=16 results in a single sided 99% threshold of 3 “randomly predictable stocks”. 
Since in this case the number of predictable stocks is 6, H0 is rejected for the KFX 
stock series, as it is found for all the other ATX and KFX stock series. On the 
other hand, in the DAX stocks with running windows of length 50 and a 
reliability threshold of 0.60 only 2 out of 30 stocks were flagged as “predictable 
above random”. This result stands within the 99% single-sided confidence 
interval of the binomial distribution with parameters 05.0ˆ =p  and N=30, which 
is equal to 5 “randomly predictable” stocks. Thus, one cannot reject H0 for those 
particular stocks, as indicated for most DAX and DJ30 series (beside the DJ30 
series for a window size of 75 days). 

Table 5: Aggregate results for tables 1, 2, 3 and 4 respectively. For the bold cells,  
the EMH is rejected. 

Index Name\ 
window size 50 75 100 

Name of index 
from which the 
aggregates were 
taken 

# of 
stock 
series 
per 

index 

#Pred 
 

 #stocks 
predictable with 
95% confidence 

% of total 
#Pred

#stocks predictable 
with 95% 

confidence  
% of total 

#Pred

#stocks predictable 
with 95% 

confidence  
% of total 

0.60 0.65 0.70 0.60 0.65 0.70 0.60 0.65 0.70 
ATX-INDEX 
VIENNA 20 14/20 

70 
14/20

70 
10/20

50 
8/20
40 

13/20
65 

13/20
65 

8/20 
40 

7/20
35 

14/20
70 

14/20 
70 

11/20 
55 

6/20 
30 

KFX-INDEX 
KOPENHAGEN 16 12/16 

75 
11/16
68.7

10/16
62.5

6/16
37.5

12/16
75 

11/16
68.7

10/16
62.5 

6/16
37.5

13/16
81.2 

12/16 
75 

9/16 
56.2 

6/16 
37.5 

DAX-INDEX 
FRANKFURT 30 1/30 

3.33 
2/30
6.67

0/30
0 

1/30
3.33

0/30
0 

0/30
0 

1/30 
3.33 

1/30
3.33

1/30 
3.33 

1/30 
3.33 

0/30 
0 

1/30 
3.33 

DJ30-INDEX 
NEW-YORK 30 8/30 

26.67 
4/30
13.33

4/30
13.33

2/30
6.66

6/30
20.00

5/30
16.67

6/30 
20.00

5/30
16.67

8/30 
26.67

4/30 
13.33 

2/30 
6.66 

2/30 
6.66 

 
4.4 Testing Volume and Predictability relations for the ATX Stocks   
In the previous experiments, a significant predictability level was detected in two 
of the international stock markets: all the Vienna ATX (Austria) and the 
Kopenhagen KFX (Denmark) stock series demonstrate significant predictability 
for all the considered reliability thresholds and for all sliding windows lengths. In 
these two markets the null hypothesis was rejected, implying that the market is 
inefficient. In contrast, and as expected in larger and potentially more efficient 
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markets6, the implementation of the same test procedures to the Frankfurt DAX7 
(Germany) and the DJ30 (New-York) stock series resulted in a much lower 
predictability rate and, thus, to the acceptance of the null hypothesis, implying 
that the market is efficient. The purpose of this section is to test if the relation 
between volume and predictability holds not only across markets, but also within 
a market over time. 

Risk is often related to the predictability level: the less predictable the future 
value of an asset is, the more risky it is. Modern financial theory asserts that 
investors expect higher returns from riskier assets; therefore, the factors that 
influence the risk of a stock may also influence its predictability. Fama and 
French (1993) construct a three-factor asset pricing model for stocks that includes 
the conventional market correlation factor (beta) and two additional risk factors 
related to stock size and book to market equity. The model implies that the 
expected return on a portfolio in excess of the risk free rate is explained by the 
sensitivity of its return to three factors: (i) the excess return on a broad market 
portfolio; (ii) the difference between the return on a portfolio of small stocks and 
the return on a portfolio of large stocks (SMB); and (iii) the difference between 
the return on a portfolio of high-book-to-market stocks and the return on a 
portfolio of low-book-to-market stocks (HML). The size effect and the book to 
equity effect are detected in many international stock markets8 (Fama and French, 
1998; Maroney and Protopapadakis, 2002). The purpose of this section is to test 
the Fama and French three factors model for the predictability of the stocks 
composing the ATX top 22 index of Vienna. 

Stock data9 was collected for the stocks10 composing the ATX top 22 index 
of Vienna. Table 5 presents stock value11 (in Billion Euro) as well as the average 
and standard deviation of the daily turnover for each stock (in Million Euro). The 
beta (correlation with the ATX index) was computed for each stock. Based on 
their values12, the top and bottom 30% of the stocks were classified as Big or 
Small (respectively). 

                                                 
6 In a small volume market, large buy (sell) orders are typically partitioned over several 
consecutive days to avoid price swings. This might explain some of the predictability results we 
obtained. 
7 Gurgul et al. (2007) investigated the dynamic relations between price and volume in the DAX 
stocks 
8 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#International 
9 Data taken from http://en.wienerborse.at/prices_statistics/statistics/yearly/index.html for the year 
2000. 
10 The index is updated semi-yearly. Only 20 stocks were included for prolonged periods of time. 
11 In the year 2000 in Billion Euro. Older data is not in available in the Euro currency. 
12 This classification is typical in implementing the Fama and French model. However, the Fama 
and French model is typically implemented on multiple stocks on a monthly or yearly basis. We 
had only 20 stocks and therefore implemented it on the full period which could be over 10 years. 
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For the first experiment, we computed the time series of the Small-minus-Big 
portfolio (the difference between the daily average13 of the small stocks and the 
daily average of the big stocks). Applying the VOM tree to the Small-minus-Big 
time series, we failed to detect 'above random predictability' cases. No correlation 
was detected between any of the stock time series and the Small-minus-Big time 
series (beta smaller than 0.01). Note that the Fama and French model attempts to 
detect excess returns. The VOM tree attempts to detect above random 
predictability. There is no direct relation between predictability and excess 
returns. 

Table 6: Predictability measures for 20 of the stocks composing the ATX top 22 index of 
Vienna. The data used for regression analysis based on the length 75 series. 

In the second experiment, we used the SPSS statistical package to run a stepwise 
regression on the data in Table 6 to predict two variables: i) the FCPART for a 
0.65 reliability threshold and ii) the percentage of trading days above 0.65 
threshold. The regression for the FCPART turned out to be statistically significant 
(F-statistic with Pvalue =0.007; Adjusted R2 =0.674; Pvalue<0.05 for the regression 
                                                                                                                                     
Stock values and rankings may change significantly over time. Therefore, we also used the 2003 
data to screen out stock that changed their category significantly. 
13 The portfolios were adjusted daily such that the shares retain an equal monetary value. Some 
stocks had shorter time series than others. Therefore, we adjusted the weights of the existing 
shares in the portfolio to compensate for the smaller number of shares. 

%Trading 
days 

above 
0.65 

threshold 

%Correct 
predict-
ions for 

0.65 
threshold 

Correlat-
ion with 

ATX 
Index 
(Beta) 

StDev of 
Daily 

Turnover 
Million 

Euro 

Average 
Daily 

Turnover 
Million 

Euro 

Size 
Categ-

ory 
1=Small 
2=Big 

Volume 
Billion 
Euro 

(2000) 

#  of 
trad-
ing 

days 

STOCK NAME 
 

15.46 59.58 0.04 3.86 1.91 1 0.58 2489 BWT AG 
9.09 52.43 0.04 2.89 1.24  0.40 2697 BBAG STAMM 
15.78 58.13 0.05 5.28 2.59 1 0.21 1157 SEMPERIT HDG 
10.50 52.86 0.47 36.20 22.96 1 0.48 2187 VA TECHNOLOGIE 
11.73 60.37 0.05 1.88 0.69 1 0.42 3274 AUSTRIAN AIRL 
27.96 70.40 0.07 16.10 7.00 2 2.42 2260 ERSTE BANK ST 
8.04 50.00 0.28 40.74 21.89 2 2.23 2935 OMV AG 
4.66 42.31 0.29 8.64 3.69  1.05 583 TELEKOM AUST 
13.42 55.01 0.00 21.06 9.38 2 1.63 3222 VERBUND 
10.65 50.80 -0.02 23.29 12.60 2 1.11 2944 EVN 
17.97 54.82 0.10 0.46 0.24  0.26 949 PALFINGER 
43.92 64.04 0.44 0.29 0.09  0.75 3001 UNIQA VERS 
6.77 54.19 0.06 14.51 7.76  0.63 2669 FLUGHAFEN WIEN 

5.05 53.06 0.25 20.23 12.17 1 0.39 1967 
BOEHLER 
UDDEHOLM 

16.06 55.60 0.05 5.21 2.36 2 1.41 3027 GENERALI HDG 
11.34 57.07 0.07 7.14 3.00 1 0.42 3271 RHI 
5.55 56.44 -0.01 18.42 12.31  1.28 1844 VOESTALPINE 
7.70 52.40 0.01 16.31 8.05 2 1.33 3273 WIENERBERGER 
14.33 51.47 0.02 3.50 1.77  0.42 2397 BRAU UNION 
6.01 51.91 -0.02 10.71 5.78  0.56 2205 MAYER MELNHOF 
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coefficients' t-statistic): The regression model contains a constant factor, and the 
variables stock's volume, stocks size category, and standard deviation of the 
stocks' daily turnover. Note that this experiment corroborates Fama and French's 
hypothesis that small stocks behave differently than large stocks. 
 
5. Results 

Following the above tests, a significant predictability is detected in two of the 
international stock markets. In particular, all the Vienna ATX (Austria) and the 
Kopenhagen KFX (Denmark) stock series demonstrate significant predictability 
(above the random prediction reference) for all reliability thresholds and for all 
windows lengths. Overall percentages indicate that 30% to 81% of those stock 
series (see Table 5) lead to an “above random” FCPART and to the rejection of 
the null hypothesis. Thus, these two markets were found to be inefficient in the 
considered period. By contrast, the implementation of the same test procedures to 
the Frankfurt DAX14 (Germany) and the DJ30 (New-York) stock series result in a 
much lower predictability rate and, thus, to the acceptance of the null hypothesis 
that the market is efficient. As expected in larger and potentially more efficient 
markets15, the DJ30 (New-York) stock series demonstrate some predictability 
level (on the limit of a random prediction reference) for windows of length 75 and 
around 20% of the stocks. A regression experiment for the stocks in the ATX 
index corroborate Fama and French's hypothesis that small stocks behave 
differently than large stocks in certain time periods 

Within the predictable stock series, the FCPART can be considered as a 
measure for the stock’s efficiency. While the FCPART can go up to 63.07% (see 
Uniqa Vers in Table 3), the typical proportion of predictable trading days for the 
ATX and KFX series is around 30% for the 0.60 reliability threshold, while 
dropping to about 10% for the 0.70 reliability threshold. The equivalent figures 
for the DJ30 series are lower – about 20% for the 0.60 reliability threshold, while 
dropping to about 4% for the 0.70 reliability threshold. This result implies that 
even the stock series that demonstrated above random predictability are efficient 
around 70% to 90% of the time (80% to 96% for the DJ30). Once again, it 
corresponds with the EMH theoretical convention that expects the markets to be 
efficient most of the time. 

The reliability threshold has to be practically determined when implementing 
the prediction scheme in an actual investment strategy. As expected, the FCPART 
is lower than the threshold and tends to increase with the reliability threshold (see 

                                                 
14 Gurgul et al. (2007) investigated the dynamic relations between price and volume in the DAX 
stocks 
15 In a small volume market, large buy(sell) orders are typically partitioned over several 
consecutive days to avoid price swings. This might explain some of the predictability. 
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appendix B). However, an increase of the reliability threshold reduces both the 
number of inefficient stocks and the percentage of predictable days. A threshold 
of 0.60 seems as a reasonable choice for an investment strategy, since an increase 
of the threshold beyond that value reduces the number of available trading days 
and often results in a lower prediction rate (see Table 5). 

In an attempt to validate the conclusions of section 5 in regard to the market 
efficiency, and in conjunction to the field of information theory, we also 
computed the compressibility level beyond random measure16 for each stock 
series and for each running window length, in a manner similar to that of 
Shmilovici et al. (2003). The conclusions regarding the market efficiency 
remained unchanged. Note that unlike the used predictability measures, the 
compressibility measure is impractical in terms of a potential investment strategy 
but rather reflects the randomness level of the data. 

For further validation purpose, we also inspected the actual daily returns for 
some of the most predictable windows. As expected, it reveals that prolonged 
periods of positive (negative) daily returns correspond to predictability beyond the 
level of random prediction. 

 
6. Discussion 

From its early beginnings, the EMH has woven together two theoretical threads: i) 
the hypothesis that prices incorporate all relevant information; and ii) the 
hypothesis that there are no steady profitable trading strategies (Lo, 2007). The 
experiments in sections 4.3 lead to the rejection of the EMH based on the first 
thread – detecting statistically-significant information patterns in the daily stock 
time-series. 

There is evidence that the daily stock time-series exhibit mean reversion 
toward an equilibrium level and that the degree of mean reversion is stronger 
when the deviation from the equilibrium is larger. Moreover, such return reversals 
for the market as a whole may be quite consistent with the efficient functioning of the 
market since they could result, in part, from the tendency of interest rates to be mean 
reverting, or that transaction costs produce a band of inaction in which the big 
traders allow the daily stock prices to float freely. Consequently, the adjustment 
process takes place only when the rates approach the upper or lower limit of the 
inaction band (Chung and Hong 2007). Therefore, the found predictability cases 
could be attributed to the intervention of the big traders at specific (yet unknown) 
threshold values. The market efficiency is confirmed whenever apparently 
profitable trading strategies are ruled out by market friction (Malkiel, 2003); In 
other words, some statistically significant anomalies are not economically 

                                                 
 16 Results are not presented here but are available from the authors upon request. 
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significant. If the level of transaction costs needed to generate profits from an 
anomaly (therefore, eliminating it) is far below the level that actually exists in the 
market, it could explain why a reasonably efficient market allows the anomaly to 
exist (Wu and Shafer 2007). The VOM tree model that we used in this paper is 
capable of capturing patterns of reversion to equilibrium (Singer and Ben-Gal, 
2007), as long as the reversion is within the window of observation (50 to 100 
consecutive trading days in our experiments). This capability to predict beyond 
random can be explained as follows: when the deviation from equilibrium is 
small, and the stock market can move either way, the VOM tree can captures only 
a small predictability level above random (such as seen in leaf 1 in Figure 1). On 
the other hand, in periods of large deviation from equilibrium, when the stock 
market tends to move towards the equilibrium, the VOM tree can captures a 
strong predictability above random (such as seen in leaf 2 in Figure 1). 

The regression experiment in section 4.4 corroborates the results in section 
4.3: the stock's size category is negatively correlated – therefore the stock is less 
predictable for the "Big" category than for the "Small" category. The standard 
deviation of the stocks daily trading volume (a common measure of the stock's 
risk) is negatively correlated with the stock's predictability (FCPART), as 
expected from conventional financial theory. 

A “real” test for the market efficiency is in the ability to suggest a trading 
strategy that demonstrates excess returns, e.g., consistent returns above the "buy 
and hold" strategy. This is a difficult task considering the market’s infrequent 
inefficiencies and the limited reliability of the forecast. Some attractive attributes 
of the VOM tree lie in its ability to predict the sign17 of the price change at each 
period, estimate the reliability of these sign predictions and detect periods of the 
market’s inefficiency. Unlike the conventional test for market efficiency that is 
largely a one-shot game, the VOM tree can be used to measure the fraction of the 
time that the market is efficient. Econometricians learned similar ideas from the 
co-integration analysis, while the latter does not automatically provide a measure 
on the time of disequilibrium. 

The main limitation of the VOM tree is that it ignores the actual values of the 
expected return. That is, the current version of the algorithm is based on a binary 
alphabet, thus, it is limited to the forecasting of either positive or negative returns 
without differentiating among the expected returns. Such a limited prediction of 
sign sequences addresses a "weaker" form of the market efficiency. As a first 
practical step, a binary predictor should at least indicate if the predicted return is 
above the trade commissions (e.g., the “bid and ask” spreads). Taking further 
steps in this direction and integrating the VOM tree in a strategic trading tool that 
might generate excess returns is a matter of active research. Another limitation is 

                                                 
17 For a ternary discretization of the price change, the VOM model can predict more than the sign 
change 
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the undefined discretization process of the series that is required prior to the 
implementation of the algorithm. Kahiri et al. (2004), Shmilovici et al. (2009) 
used the VOM tree to predict ternary trends (i.e., increase symbol, stable symbol 
and decrease symbol) in the FOREX market. The trading commissions 
determined the discretization levels. Tino et al. (2000) discussed the relation 
between the discretization strategy, the sliding window length, and the size of the 
model. They concluded that "discretization should be viewed as a form of 
knowledge discovery revealing the critical values in the continuous domain". 

As seen in Table 5, given a reliability threshold the percentages of predictable 
stock series are fairly equal for the window lengths. Thus, it seems that the 
considered window lengths have no apparent effects on the percentage of 
predictable series. Theoretically, the predictability should grow with the window 
length (see appendix B). However, the considered lengths might be too small and, 
moreover, a theory of universal prediction for noisy sequences is not yet available 
in this direction (Hutter, 2001). Longer sequences are possibly more sensitive to 
noise and temporal market effects, and may need an adaptive version of the VOM 
tree algorithm, such as the one proposed in Federovsky et al., (1998). No attempt 
was made in this paper to optimize the VOM tree (e.g., by optimizing the pruning 
coefficient C and other structure parameters) for each window length and stock 
and it is left for future research. However, recall that tuning experiments revealed 
that the VOM tree is fairly robust to the choice of C in the range ]0.4,...,25.0[∈C . 

Another practical deficiency of the VOM tree – the limited number of 
prediction days with a high reliability – can be ameliorated by independently 
implementing the VOM tree for each series in a portfolio of stocks. The theory of 
universal portfolios (Cover 1991, Blum and Kalai 1997) analyses an investment 
strategy when a prediction is available for each series in the portfolio. Preliminary 
results reported in Alon-Brimer (2002) indicate that such a strategy is, in fact, 
feasible. 

We conclude by noting that a predictability measure of a series (e.g., the rate 
of correct predictions), as used in this paper, can be regarded as a generic 
econometric feature that is applicable to the analysis of any time series to measure 
its "closeness" to a random process. Unlike the proposals for testing the 
Martingale Difference Hypothesis (MDH)18 (Domínguez and Lobato, 2003) that 
require unreasonably large amounts of data, the proposed predictability measure 
is computable even for relatively short sequences. 
Website: For available VOM tree web server see http://www.eng.tau.ac.il/~bengal/ 

                                                 
18 The MDH states that the best prediction (in least mean square sense) of the future values of a 
time series given the current information set is just the unconditional expectation. Hence, past 
information does not help to improve the forecast of future values of a MDS. 
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 Table 3: Predictability measures for the stocks composing the German DAX 30 
index. (Bold numbers are above the 95% confidence) 

Stock Name\ window 
size 50 75 100 

 
 
Name 
 

Start 
Period 

(#predicti
on days 

for series 
length 50) 

% predictability 
above threshold 

% samples above 
threshold used for 

prediction 

% predictability 
above threshold 

% samples above 
threshold used for 

prediction 

% predictability 
above threshold 

% samples above 
threshold used for 

prediction 
0.60 0.65 0.70 0.60 0.65 0.70 0.60 0.65 0.70 

XETRA DAX PF 26-Nov-90 
(3107) 

56.32
19.09

55.56
10.43

48.60 
3.44 

55.49 
17.13 

55.77
8.44 

55.42 
2.69 

57.24 
14.0 

58.43 
5.43 

54.35 
1.50 

ADIDAS 
SALOMON 

17-Nov-95 
(1855) 

52.19
17.25

50.31
8.68 

45.31 
3.45 

50.20 
13.83 

45.54
5.52 

42.50 
2.19 

49.50 
11.19 

44.74 
2.11 

37.50 
0.89 

HENKEL KGAA 
VZ 

8-Apr-91 
(2783) 

48.04
13.76

55.80
6.50 

58.59
4.60 

51.11 
8.16 

54.49
6.06 

55.81 
3.12 

50.51 
7.24 

48.12 
4.10 

46.51 
1.57 

ALLIANZ AG 5-Apr-91 
(3014) 

54.28
18.21

55.56
9.56 

55.15 
4.51 

49.20 
12.58 

48.55
5.79 

50.00 
2.28 

47.86 
8.67 

38.10 
2.83 

38.30 
1.59 

HYPOVEREINSB
ANK 

5-Apr-91 
(2990) 

51.04
19.33

51.60
9.40 

49.61 
4.25 

49.31 
14.64 

47.74
6.71 

42.19 
2.16 

48.13 
10.88 

14.55 
3.95 

45.28 
1.80 

ALTANA 19-Jan-96 
(1669) 

49.83
17.32

53.06
8.81 

50.00 
4.41 

53.30 
12.90 

56.25
5.84 

48.94 
2.86 

51.04 
11.86 

52.31 
4.01 

46.88 
1.98 

INFINEON TECH 
N 

13-Mar-00 
(767) 

54.05
14.12

51.14
11.47

57.89 
2.48 

48.67 
15.23 

54.84
4.18 

60.00 
2.02 

57.95 
12.27 

57.14 
2.93 

53.85 
1.81 

BASF AG 5-Apr-91 
(3015) 

51.31
17.78

54.18
9.12 

52.05 
4.84 

49.01 
13.51 

48.53
6.82 

42.86 
2.34 

52.83 
10.73 

56.74 
4.76 

59.62 
1.75 

LINDE 5-Apr-91 
(2905) 

48.18
17.01

48.26
6.92 

46.67 
2.58 

45.05 
7.71 

39.73
2.53 

43.33 
1.04 

48.80 
4.38 

57.14 
1.47 

55.88 
1.19 

BAY MOT 
WERKE 

5-Apr-91 
(3014) 

51.52
18.61

51.37
9.69 

55.56 
5.37 

49.85 
11.07 

51.95
5.15 

48.98 
3.28 

50.80 
8.43 

52.14 
3.95 

48.68 
2.56 

MAN AG 5-Apr-91 
(2963) 

49.93
23.05

49.68
10.39

43.55 
4.18 

48.13 
15.49 

49.59
4.19 

45.00 
1.36 

51.00 
12.05 

56.67 
3.09 

53.33 
1.03 

BAYER AG 5-Apr-91 
(3015) 

50.94
19.40

50.67
7.46 

50.83 
3.98 

49.75 
13.44 

51.28
5.22 

53.54 
3.31 

50.75 
8.97 

51.69 
3.98 

56.16 
2.46 

METRO AG 22-Jul-96 
(1688) 

50.16
18.78

47.48
8.23 

41.18 
3.02 

50.20 
14.85 

44.44
7.04 

35.48 
1.86 

51.08 
11.36 

31.03 
1.77 

38.10 
1.28 

COMMERZBANK 
AG 

5-Apr-91 
(3015) 

52.04
17.84

49.17
8.03 

43.04 
2.62 

51.96 
11.07 

53.74
4.98 

41.67 
1.20 

52.58 
9.81 

46.96 
3.88 

34.48 
0.98 

MLP 15-Oct-98 
(959) 

49.20
26.07

45.33
7.82 

50.00 
4.80 

46.77 
13.28 

44.12
3.64 

52.63 
2.03 

46.67 
9.90 

53.85 
4.29 

52.94 
3.74 

DAIMLERCHRYS
LER 

5-Apr-91 
(3009) 

50.00
17.08

50.55
9.14 

52.32 
5.02 

50.54 
12.47 

54.55
6.64 

51.52 
3.332 

54.05 
12.50 

50.67 
5.07 

46.48 
2.40 

MUENCH. 
RUECK N 

26-Jul-94 
(1873) 

48.26
16.92

47.50
6.41 

53.85 
41.16 

47.80 
9.85 

47.06
4.60 

49.18 
3.30 

47.27 
6.03 

45.00 
2.19 

45.95 
2.03 

DEUTSCHE 
BANK N 

5-Apr-91 
(3010) 

49.79
16.08

47.62
8.37 

48.78 
5.45 

47.44 
10.45 

50.66
5.09 

40.00 
2.51 

50.70 
7.26 

51.69 
3.99 

56.90 
1.96 

RWE ST A 5-Apr-91 
(3015) 

54.53
17.58

54.66
8.19 

53.77 
3.52 

49.71 
11.71 

51.48
5.65 

52.31 
2.17 

48.35 
9.21 

54.24 
3.98 

56.72 
2.26 
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DEUTSCHE POST 
NA 

20-Nov-00 
(591) 

45.45
22.34

52.31
11.00

42.86 
5.92 

49.04 
18.37 

54.05
6.54 

53.85 
2.30 

41.18 
9.43 

33.33 
2.22 

20.00 
0.92 

SAP AG 13-Sep-94 
(2015) 

48.34
13.45

50.00
5.16 

56.14 
2.83 

46.43 
7.04 

37.50
2.41 

37.50 
1.61 

38.71 
3.16 

37.50 
1.22 

23.53 
0.87 

DT BOERSE N 5-Feb-01 
(539) 

48.72
14.47

41.86
7.98 

38.10 
3.90 

55.00 
3.89 

57.14
1.36 

57.14 
1.36 

20.00 
1.02 

0.00 
0.41 

0.00 
0.41 

SCHERING AG 5-Apr-91 
(2949) 

48.80
17.02

52.34
8.85 

50.00 
4.88 

49.44 
12.11 

44.94
5.40 

55.56 
2.46 

48.09 
11.76 

50.89 
3.86 

50.67 
2.59 

DT LUFTHANSA 
AG 

5-Apr-91 
(2937) 

51.6 
19.14

48.58
7.22 

49.51 
3.51 

48.62 
13.7 

47.06
5.25 

46.51 
2.95 

44.36 
9.53 

44.30 
2.74 

44.44 
1.87 

SIEMENS N 5-Apr-91 
(3210) 

50.34
13.86

50.79
5.95 

48.00 
3.12 

52.82 
9.45 

55.94
4.49 

56.63 
2.61 

52.38 
7.31 

52.14 
3.70 

55.71 
2.22 

DT TELEKOM N 18-Nov-96 
(1599) 

53.01
16.64

53.85
9.76 

57.32 
5.13 

55.56 
13.72 

58.59
6.29 

65.63
4.07 

57.14 
10.39 

57.32 
5.29 

60.29 
4.39 

THYSSEN KRUPP 5-Apr-91 
(3013) 

50.0 
17.13

54.05
8.60 

50.98 
5.08 

50.41 
12.15 

49.75
6.59 

45.63 
3.45 

48.81 
9.96 

50.47 
3.61 

52.94 
1.72 

E.ON AG 5-Apr-91 
(3015) 

47.21
16.65

50.2 
8.46 

46.51 
4.28 

49.72 
11.91 

50.0 
7.22 

54.0 
3.34 

50.72 
11.70 

49.71 
5.90 

50.52 
3.27 

TUI AG 5-Apr-91 
(2999) 

50.68
24.34

46.68
11.77

45.59 
4.53 

51.42 
16.54 

51.31
6.42 

55.26 
2.56 

51.47 
11.53 

53.06 
3.32 

60.42 
1.63 

FRESENIUS 
MEDI 

4-Oct-96 
(1635) 

55.18
18.29

55.32
8.62 

57.33 
4.59 

51.59 
1565 

55.24
6.52 

56.10 
2.55 

51.91 
11.55 

53.23 
3.91 

51.43 
2.21 

VOLKSWAGEN 
AG 

5-Apr-91 
(3215) 

52.98
22.95

51.30
9.58 

55.15 
4.23 

50.89 
15.83 

53.81
6.18 

54.31 
3.64 

52.45 
11.63 

54.00 
4.74 

53.25 
2.43 

 
Table 4: Predictability measures for the stocks composing the American Dow-Jones 30 

index. (Bold numbers are above the 95% confidence) 

Stock Name\ window size 50 75 100 

 
 
Name 
 

Start Period 
(#prediction 
days for series 
length 50) 

% predictability 
above threshold 

% samples above 
threshold used for 

prediction 

% predictability 
above threshold

% samples above 
threshold used 
for prediction 

% predictability 
above threshold 

% samples above 
threshold used for 

prediction 
0.60 0.65 0.70 0.60 0.65 0.70 0.60 0.65 0.70 

DOW-JONES30  
(USA) 

2/1/90-31/12/01
(2977) 

50.89
16.96

52.57
5.88 

56.38
3.16 

53.18
11.72

52.67
5.08 

49.32
2.47

46.55 
7.93 

48.35 
3.11 

52.24 
2.29 

ALCOA INC 2/1/90-31/12/01
(2977) 

47.57
17.30

45.62
7.29 

49.57
3.93 

45.12
10.06

46.85
4.84 

45.45
2.24

47.98 
5.91 

51.06 
3.21 

51.16 
1.47 

AMERICAN 
EXPRESS CO 

2/1/90-31/12/01
(2977) 

54.36
18.11

51.40
9.61 

52.91
5.78 

51.37
13.58

48.92
6.30 

51.49
3.42

51.51 
11.34 

50.43 
3.93 

49.15 
2.02 

BOEING CO 2/1/90-31/12/01
(2977) 

51.59
22.20

54.39
9.57 

51.92
3.49 

52.99
15.85

56.25
6.50 

60.87
3.12

56.47 
11.62 

55.92 
5.19 

52.70 
2.53 

CITIGROUP 2/1/90-31/12/01
(2977) 

53.041
5.45 

53.49
8.67 

50.00
4.77 

52.16
12.53

53.81
6.67 

52.04
3.32

53.23 
15.34 

54.32 
5.53 

57.89 
2.60 

CATERPILLAR 
INC 

2/1/90-31/12/01
(2977) 

51.98
19.52

51.92
11.39

49.61
4.33 

54.18
13.38

53.91
7.79 

56.18
3.01

51.31 
13.05 

51.45 
4.71 

55.38 
2.22 

DU PONT CO 2/1/90-31/12/01
(2977) 

51.59
21.16

52.30
10.21

51.94
4.33 

52.49
16.33

49.73
6.33 

42.65
2.30

52.94 
11.62 

55.65 
3.93 

50.00 
1.50 
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WALT DISNEY 
CO 

2/1/90-31/12/01
(2977) 

46.83
15.35

41.92
6.65 

40.40
3.33 

53.47
11.21

51.91
4.44 

51.52
2.24

46.94 
8.37 

43.42 
2.60 

45.10 
1.74 

EASTMAN 
KODAK 

2/1/90-31/12/01
(2977) 

46.10
14.65

47.30
8.10 

48.06
4.33 

53.05
13.35

49.21
6.40 

56.32
2.95

49.14 
11.89 

52.63 
3.89 

50.79 
2.15 

GENERAL 
ELECTRIC CO 

2/1/90-31/12/01
(2973) 

52.18
22.34

50.57
11.82

51.18
5.71 

52.24
15.89

56.02
7.32 

58.40
4.23

53.91 
12.68 

59.59 
4.99 

64.63 
2.80 

GENERAL 
MOTORS 

2/1/90-31/12/01
(2977) 

50.84
20.09

51.71
7.86 

50.00
3.49 

47.38
12.94

46.09
3.90 

42.03
2.34

50.66 
7.76 

52.17 
2.36 

44.44 
1.54 

HOME DEPOT 
INC 

2/1/90-31/12/01
(2975) 

48.00
10.92

50.34
5.01 

50.00
3.56 

50.31
5.39

48.89
3.05 

44.00
1.69

52.00 
5.12 

43.08 
2.22 

39.02 
1.40 

HONEYWELL 
INTERNATION. 

2/1/90-31/12/01
(2977) 

52.85
18.88

56.42
8.63 

59.54
4.40 

49.18
14.46

50.00
7.72 

50.88
3.86

49.52 
10.76 

46.67 
4.10 

49.38 
2.77 

HEWLETT- 
PACKARD 

2/1/90-31/12/01
(2977) 

54.84
15.62

54.87
7.59 

55.56
4.84 

55.42
11.25

58.12
6.47 

61.90
4.27

55.08 
10.42 

59.14 
6.35 

61.47 
3.72 

INTLLIGENT 
BUS MACHINE 
(IBM) 

2/1/90-31/12/01
(2977) 

48.21
20.69

46.15
8.30 

47.37
3.83 

49.87
13.04

50.32
5.32 

47.37
1.93

47.72 
8.23 

35.00 
1.37 

36.36 
0.75 

INTEL CORP 2/1/90-31/12/01
(2977) 

49.52
17.37

51.74
8.70 

47.22
3.63 

48.89
12.20

46.06
5.49 

40.35
1.93

48.49 
10.22 

46.67 
3.07 

54.55 
1.88 

INTERNATION
AL PAPER CO 

2/1/90-31/12/01
(2977) 

47.18
11.89

50.52
6.52 

52.48
4.74 

49.36
7.96

54.49
5.66 

53.51
3.86

51.32 
7.79 

51.32 
5.19 

51.43 
2.39 

JOHNSON& 
JOHNSON 

2/1/90-31/12/01
(2975) 

48.27
11.62

48.97
4.87 

54.43
2.65 

53.04
8.37

53.04
3.90 

50.59
2.88

49.32 
4.99 

53.01 
2.84 

50.00 
1.84 

JP MORGAN 2/1/90-31/12/01
(2975) 

51.85
18.14

53.71
7.69 

53.60
4.20 

55.67
13.14

57.69
7.93 

39.13
2.34

51.98 
11.24 

54.55 
6.01 

40.35 
1.95 

COCA COLA 
CO 

2/1/90-31/12/01
(2977) 

43.15
13.23

44.37
5.07 

45.67
4.03 

49.77
7.22

51.00
3.39 

55.71
2.37

49.18 
4.17 

50.65 
2.63 

54.00 
1.71 

MCDONALDS 
CORP 

2/1/90-31/12/01
(2977) 

47.83
20.86

48.50
8.94 

47.22
4.84 

49.06
14.43

45.99
6.33 

37.08
3.01

47.87 
10.42 

42.40 
4.27 

42.31 
1.78 

3M COMPANY 2/1/90-31/12/01
(2976) 

41.60
8.80 

41.12
3.59 

39.74
2.62 

40.48
4.27

39.47
2.57 

40.74
1.83

51.47 
2.32 

50.00 
1.37 

50.00 
1.16 

ALTRIA 
GROUP 

2/1/90-31/12/01
(2977) 

52.30
21.90

54.90
10.28

55.47
4.60 

47.54
15.18

48.99
6.71 

43.08
2.20

49.09 
11.21 

50.54 
3.18 

51.85 
1.84 

MERCK & CO 2/1/90-31/12/01
(2977) 

52.03
18.21

52.56
7.86 

55.06
2.99 

55.36
11.69

55.00
4.07 

59.42
2.34

54.85 
9.16 

47.89 
2.43 

50.00 
1.78 

MICROSOFT 
CP 

2/1/90-31/12/01
(2977) 

46.40
13.54

43.58
6.01 

37.25
3.43 

46.58
7.42

39.22
3.46 

29.82
1.93

51.70 
5.02 

56.82 
1.50 

58.33 
1.23 

PROCTER & 
GAMBLE 

2/1/90-31/12/01
(2977) 

47.95
13.10

53.89
6.48 

51.94
4.33 

48.45
5.45

47.66
3.62 

48.00
2.54

41.86 
2.94 

45.28 
1.81 

44.83 
0.99 

SBC COMMS 2/1/90-31/12/01
(2977) 

48.18
18.47

45.37
7.26 

46.99
2.79 

51.36
13.72

50.34
5.05 

55.17
1.96

49.53 
10.97 

43.66 
2.43 

50.00 
1.16 

AT&T CORP 2/1/90-31/12/01
(2977) 

54.61
25.53

55.74
14.04

53.37
5.98 

56.82
22.83

58.36
9.93 

60.80
4.23

55.19 
21.05 

51.94 
7.04 

55.34 
3.52 

UNITED TECH 
CP 

2/1/90-31/12/01
(2976) 

50.45
22.64

48.81
9.84 

48.04
3.43 

49.29
16.70

45.29
5.76 

46.94
1.66

48.79 
12.68 

48.42 
3.25 

59.65 
1.95 

WAL-MART 
STORES 

2/1/90-31/12/01
(2976) 

54.53
23.72

56.65
11.62

59.02
6.15 

56.11
19.14

57.09
9.55 

62.09
5.18

57.25 
17.66 

54.24 
6.05 

55.65 
3.93 

EXXON MOBIL 2/1/90-31/12/01
(2976) 

46.42
17.37

44.36
8.94 

45.80
4.40 

49.03
8.71

50.40
4.23 

48.33
2.03

55.06 
6.08 

57.45 
3.21 

54.55 
1.50 
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Appendix A: Universal Prediction and Estimation  
This section illustrates prediction related problems, as modeled and addressed in 
the field of information theory. It sketches some known approaches for the 
prediction of finite-alphabet sequences that are assumed to be generated by a 
stochastic process. We use such an approach for the prediction of daily stock 
returns.  

Following the notation in Ziv (2001, 2002), consider finite-alphabet 
sequences of symbols mN

m
N XXXX ,,,, 0 KK−− ≡  generated by a stationary 

source with unknown properties, where each symbol iX  belongs to an alphabet A 
with cardinality |A|. 

The symbol prediction problem (Merhav and Feder, 1998): the optimal 
prediction of 1X  for any observed suffix  0

NX −  is achieved by choosing the 

symbol AX ∈1  that maximizes the conditional probability )|( 0
1 NXXP − . The 

conditional probability is unknown and has to be estimated from the training 
sequence 0

NX − . Consider the class of universal predictors of 1X  conditioned on 

the context 0
0KX − , which is a sub-sequence of 0

NX − . The length of the training 

sequence  )( 0
00 NXKK −=  is itself an integer function of the training sequence 

0
NX −  and determines the required (varying) memory length ( NK ≤≤ 00 ) for the 

prediction based on the observed context (this is the reason that this prediction is 
also called 'context specific'). For example, the Bernoulli case, where the symbols 
are independent of past observed symbols, is indicated by K0=-1, while a Markov 
model of order one is represented by K0=0. 

A simple universal prediction algorithm follows. Find all the different 
instances of the context 0

0KX −  in the sequence 0
NX − . K0 is chosen as the largest 

integer such that 0
0KX −  appears at least n times in the sequence 0

NX − . Note that 

n is limits the number of contexts considered in the predictor training phase. Thus, 
it avoids over-fitting the training data to small number of contexts and limits the 
storage capacity consumed by the algorithm. 1X  is then predicted as the majority 

vote symbol AX ∈1ˆ  that follows the observed instances of 0
0KX − . 

Example: Let 01011000
6 =−X  and predict 1X  – the next symbol in the 

sequence – by using the above-mentioned approach. For this short sequence, let 
us define 3=n . Note that the relevant contexts for 3=n  (reading symbols from 
the last position in the sequence) are "0", "00" and "100". However, since the 
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subsequence "00" (or the longer subsequence "100") does not appear anywhere 
before the last suffix, the context is defined as "0", i.e., 0)( 0

60 =−XK . Since the 
symbol "0" is followed twice by "1" and once by "0", 1X  is predicted to be the 
majority vote symbol "1". 

The probability estimation problem: given 0
NX − , estimate )|( 0

1 NXXP − . To 

estimate )|( 0
1 NXXP − , one assigns a conditional probability measure 

)|( 0
1 NXXQ − , such that it is "close" in some sense to the true probability 

distribution )|( 0
1 NXXP − , (see  Ziv, 2001). For a universal probability estimation 

algorithm the redundancy – i.e. the difference in the complexity measure resulting 
from using ( )⋅Q instead of ( )⋅P – is bounded uniformly, with respect to all 
distributions in a given class (Rissanen, 1984). A simple universal estimation 
algorithm defines 0K  as a function of 0

NX −  and requires 1
0KX −  to appear at least 

n times in 0
NX − . Then, it estimates )|( 0

1 NXXP −  by the frequency of the 

realization of the subsequence ( )1
0 ,

0
XX K−  over all the observed  realizations of 

subsequences ( ) AXXX iiK ∈−  ,,0
0

 in 0
NX − . 

Example: Given 01011000
6 =−X  and n=1, let us estimate )|1( 0

61 −= XXP . 

For this short sequence, 0)( 0
60 =−XK  because the subsequence 01 is the longer 

subsequence that appears in 0
6−X  while 001 (or longer subsequences) does not 

appear in 0
NX − . Since the subsequences 01 and 00 appear, respectively, twice and 

once in 0
6−X , the estimation is  

3
2

21
2

)01(#)00(#
)01(#)0|1()|1( 0

0
=

+
=

+
==− QXQ K , 

where  )(# ⋅  denotes the frequency of its argument in the sequence. Note that the 
probability estimation scheme provides more information regarding the quality of 
the prediction when compared to the symbol prediction scheme. In the paper we 
use such information to decide in which situations to predict the daily stock 
returns.  

The problem of universal compression: when solving this problem one has 
to minimize the relative entropy or the Kullback Leibler (KL) divergence 

)|(
)|(log 0

1

0
1

N

N
Q XXP

XXQE
−

−  between the real unknown distribution ( )⋅P  and the 

estimated one ( )⋅Q  (e.g., see Cover and Thomas, 1995). Ziv (2001, 2002) presents 
non-asymptotic lower bounds for the expected compression rate of any universal 
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algorithm that is sequential and has limited training data. Several universal 
algorithms that are proposed in the literature can achieve these tight bounds. The 
advantage of context-tree algorithms, such as the Context Tree Weighting (CTW) 
(Willems et al., 1995), the Prediction by Partial Matching (PPM) (Federovsky et 
al., 1998) and the VOM tree model we use in this paper is that they can approach 
Ziv's bounds with the most efficient learning rate (Weinberger et al., 1995). 
Practically, this result means that even with the use of a relatively short sequence, 
the context-tree model can converge to the (unknown) true model which 
generated the sequence.  

Federovsky et al., (1998) demonstrate the capabilities of the CTW and PPM 
algorithms for branch prediction in programs. Begleiter et al., (2004) investigate 
the capabilities of six prominent prediction algorithms on various types of 
sequences. They find that the CTW and the PPM outperform all other algorithms 
in sequence prediction tasks. In this paper, we apply a variant of the PPM 
universal prediction algorithm to estimate )|( 0

1 NXXQ − . Using this algorithm, 
called the VOM tree algorithm outlined in section 4.2, we compute the probability 
estimates for every context in the daily stock training sequence. We then use those 
estimates for a universal prediction of 1X , where )}|(max{argˆ 0

11
1

N
AX

XXQX −
∈

≡ .  

Compressibility and Predictability in the VOM tree 
As noted before, the existence of recurring patterns in a sequence enables data 
compression. Each branch in the tree represents a recurring sub-sequence called a 
"context". The entire sequence can be coded by these sub-sequences in the tree. If 
the length (in bits) of the coded sequence is shorter than the length of the original 
sequence, then compression is obtained19. The higher is the imbalance among 
branches in the tree, the higher is the compression rate that can be obtained. At 
the same time, the recurring patterns in the data introduce the possibility of 
prediction, in the sense that sequences that are highly compressible are easy to 
predict and, conversely, incompressible sequences are difficult to predict. 

Although prediction and compression are closely related, there is no one-to-
one correspondence between the predictability and the compressibility of a 
sequence20 (Feder et al., 1992). The crucial essence in compression is estimating 
the conditional probability for the next outcome given the past observations, so 
those symbols with high conditional probabilities are assigned short codes. The 
estimated probability can be used also for prediction purposes. A prediction 
algorithm, for which the redundancy is bounded uniformly with respect to all 

                                                 
19 With an arithmetic encoder, it is guaranteed that the redundancy does not exceed two bits per 
sequence (Willems et al., 1997). 
20 Some permutations of a sequence may have the same compressibility rate 
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distributions in some given class, is called a universal prediction algorithm with 
respect to that class (Rissanen, 1984). 

Feder et al., (1992) present upper and lower bounds for the relation between 
the compressibility function rate, )(Xρ , and the predictability function rate, 

)(Xπ , of a binary sequence X. They show that ))(()(2
)( 1 XhXX ρπρ −≥≥ , 

where )(Xh  is the binary entropy function. Different sequences can have the 
same compressibility, so the compressibility of a sequence does not uniquely 
determine its predictability. The upper and lower bounds intersect when 

)0,0( == πρ  and when )2/1,1( == πρ  (Figure 3). At the extreme points the 
bounds imply the intuitively appealing idea that a sequence is perfectly 
predictable if and only if it is totally redundant and, conversely, a sequence is 
totally unpredictable if and only if it is incompressible. Merhav and Feder (1998) 
present further results, such as the relation between the number of leaves in the 
VOM tree and the information content in the sequence.   

 
Figure A: Upper and lower bounds for relations between compressibility and 

predictability of a binary sequence (taken from Feder et al., 1992). 
 

Error bounds for several universal predictors are introduced in Feder and 
Federovsky (1999) for binary series and in Hutter (2001) for non-binary series.  
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Appendix B: Bounds to the Prediction Rate 
Here, we exemplify how a universal error bound can be used to find the expected 
prediction rate of a VOM tree. The used parameters are typical to the financial 
series in our experiments.  

For example, in the Bernoulli case (Feder and Federovsky, 1999), the 
expected prediction rate (fraction of correct predictions) N∏  which is obtained 
from training a saturated counter predictor on a data window of length N is equal 
to: 

)_(
4

)(
2

termssmaller
N

M
p
qqpp

M

N +−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−=∏     

where 
2
1

>p  is the probability of a successful prediction in a single Bernoulli 

experiment, pq −=1  and M denotes the number of states of the predictor. In the 
context tree, M denotes the number of independent contexts – related to the 
number of leaves in the pruned context tree. M=O(log N) – see Ben-Gal et al., 
(2003). 

Let us now plug some typical values, similar to the ones used in the section 5, 
such as 65.0=p , 50=N , 3=M . Accordingly, the expected prediction rate is 

−=∏ 65.0N 5165.0015.01185.0 ≈− . Several comments can be stated: 

i)  pN <∏ , thus, the prediction rate of the entire sequence is smaller than the 
prediction rate in a single Bernoulli experiment. 

ii) Having a longer training sequence, N, often increases the number of 
contexts M and thus results in an increased N∏ . 

iii) There exists a certain context tree with M contexts that maximizes N∏ . 
Note that M is affected by the user-defined pruning coefficient C. 

In practical terms, the "prediction loss" ( pN −∏ ) is expected whenever the 
prediction model is either "too simple" to accurately represent the sequence (e.g., 
a model with small number of state parameters), or when the training sequence 
length N is too short for training the prediction mechanism to its full capacity. The 
prediction loss is further increased when the sequence is contaminated by noise. 
In the experiments in section 5, N∏  is estimated from short and noisy sequences, 
and only the lower bound on p is determined. Effectively, this means that many 
experiments are needed to reliably conclude about the quality of the predictor. 
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