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An online group testing method to search for a hidden object in a discrete search space is proposed. A relevant example is a search after
a nonconforming unit in a batch, while many other applications can be related. A probability mass function is defined over the search
space to represent the probability of an object (e.g., a nonconforming unit) to be located at some point or subspace. The suggested
method follows a stochastic local search procedure and can be viewed as a generalization of the Learning Real-Time A∗ (LRTA∗)
search algorithm, while using informational distance measures over the searched space. It is proved that the proposed Informational
LRTA∗ (ILRTA∗) algorithm converges and always terminates. Moreover, it is shown that under relevant assumptions, the proposed
algorithm generalizes known optimal information-theoretic search procedures, such as the offline Huffman search or the generalized
optimum testing algorithm. However, the ILRTA∗ can be applied to new situations, such as a search with side information or an
online search where the probability distribution changes. The obtained results can help to bridge the gap between different search
procedures that are related to quality control, artificial intelligence, and information theory.
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1. Introduction

The group testing strategy was originally proposed during
WWII by Dorfman (1943) as a sequential testing strategy
to identify syphilis-infected blood samples. The strategy
inspects a batch of units simultaneously (originally blood
samples that were blended together), taking into account
that most probably these units are conforming (uninfected).
Therefore, there is a high probability to approve many units
by a single group test. If, however, the test indicates that
there exists a nonconforming unit (infected blood sample)
in the set, then the set is partitioned into subsets, to each
of which a smaller group testing is applied. This iterative
procedure of partitioning and testing terminates when the
nonconforming unit is found. The main motivation of the
strategy is to minimize the testing efforts in terms of min-
imum average number of tests in a sort of a zooming-in
search procedure.

The applicability of group testing to quality and relia-
bility is evident and has been recognized along the years.
Dorfman (1943, p. 436) himself associated group testing
with the classic sequential-sampling procedure for quality
inspection:

Often in testing the results of manufacture, the work can
be reduced greatly by examining only a sample of the
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population and rejecting the whole if the proportion of
defectives in the sample is unduly large.

A general formulation of the group testing can be ob-
tained by representing it as problem of search after a hidden
target in a discrete domain. Such a search is a fundamental
problem that can be associated with numerous methods in
stochastic optimization, knowledge engineering, and data
retrieval. In particular, consider a target (e.g., a noncon-
forming unit) that is located somewhere within a discrete
domain and a searcher (testing agent) that is looking for
this target. At each step, the action available to the searcher
is to check a sub-domain in order to determine whether the
target is located somewhere within this sub-domain or not.
The procedure terminates if the searcher finds the target in
a sub-domain that contains only one point. That is, if the
searcher finds the target with certainty. The searcher goal is
to choose a sequence of sub-domains such that the search
terminates in a minimal expected number of steps.

Such an example is found in Herer and Raz (2000) that
was motivated from the pasteurized foods industry and per-
tains to the process of filling plastic cups with cottage cheese
drawn from a large container. For the case of the concen-
tration of curd in the container deviating from the given
specifications, all of the cups filled with cottage cheese af-
ter this point in time are regarded as nonconforming units.
Moreover, the authors indicate that since it is not practical
to wait for the laboratory results in mid-batch, all of the
product in the container is used to fill up the cups, which

0740-817X C© 2014 “IIE”

D
ow

nl
oa

de
d 

by
 [

T
el

 A
vi

v 
U

ni
ve

rs
ity

] 
at

 0
0:

58
 1

4 
Ja

nu
ar

y 
20

14
 



Informational learning and group testing 165

are stamped with the processing time and held until the
test results are ready. If one or more of the cups sampled
shows an unacceptable concentration of curd, then it and
all cups that were produced afterwards are discarded. If
one or more of the cups sampled shows that the level of
curd is within the acceptable range, then it and all cups
that were produced before it are accepted. Thus the key
question in Herer and Raz (2000) is how many and which
product units (cups) should be sampled to find the first
nonconforming unit at minimal cost. The equivalence to
group testing is clear since each tested cup represents all of
the untested cups that were produced before it up to the last
tested cup. Note that a simultaneous testing of several cups
can be conducted at the same time. Moreover, the results
can be represented by more than a binary “conforming”
and “nonconfirming” result that can also be prone to ob-
servation noise. The proposed model addresses the case of
group testing that can be considered also as a search after a
nonconfirming unit. We further consider that such a search
can be updated by new side information gathered through
the search.

The group testing approach has many practical appli-
cations in modern real-life scenarios. One such example is
the search procedures to locate a specific mobile device in
a cellular network (e.g., see Krishnamachari et al. (2004)).
Since the mobile device often moves between network cells,
the network controller has imperfect information regarding
the device location and is required, at the time of an incom-
ing call, to find the device location quickly. The process of
searching for a mobile station over the cellular network is
called paging. The network controller pages for a particular
cellular device in a relatively large area, obtains an indica-
tion of were it is located within this area, and then zooms
into this sub-domain until the cellular telephone is reached.
In the framework of the considered search problem, the
mobile device is considered as a moving target. Another
practical example is the identification of a bad segment in
a communication network, where the group of connected
segments can be tested by sending an input to the first
segment and observing the output at the last segment. A
related example can be found in Brice and Jiang (2009) that
considers a multistage fault detection and isolation proce-
dure with applications to commercial video broadcasting
systems, as suggested by AT&T.

Mining data objects or records with specific features in
large databases is another related area that uses a group
testing approach. In this case, the tested group is repre-
sented by those objects that share similar features, such
that a database query can identify all of the objects in a
group, while a specific searched object might be an object
with specific features (see, e.g., Vitter (1999) and Ben-Gal
(2004)). Sensor-based location management in service ap-
plications provides a lot of ground to find objects with
the same sensors signature. Finally, let us note that in the
modern cloud-computing environment, a group testing ap-
proach could be of great benefit for predictive maintenance,

as it can be used to identify specific faulty modules (some-
time associated with remote services) that are stored in the
cloud by using input/output testing of different groups of
modules until the faulty module is identified.

This article introduces a group testing algorithm to
search for a target and formulates it in a framework of
an online Stochastic Local Search (SLS). Unlike the offline
search procedure, an online search does not assume that
all of the information regarding the possible locations of
the target is available a priori. The advantage of an online
search procedure lies in its robustness with respect to imper-
fect information, thus its ability to cope with unexpected
changes during the search, including the accumulation of
new information. This is in contradiction to offline pro-
cedures, such as the optimal Huffman search procedure
(Huffman, 1952), where even a slight deviation in the prob-
ability of the located target can result in an extremely in-
efficient search. Moreover, an online search procedure can
absorb new information that is revealed during the search.

In the framework of SLS, the searcher (a problem solver
in the general case) starts with some initial location in the
search space (feasible solution in the general case) and it-
eratively moves from its current location to a neighboring
location, while adaptively obtaining information through
observations. The neighborhood of each location includes
a set of candidate locations on which the searcher has more
accurate information; thus, the decision at each step is ob-
tained mainly on the basis of local information with lin-
ear complexity, which reduces the search space immensely
and avoids computational intractability due to exponential
complexity. We follow the SLS approach for the group test-
ing problem and particularly consider the Learning Real-
Time A∗ (LRTA∗) algorithm that is well known in artificial
intelligence (Korf, 1990). The original LRTA∗ algorithm
addresses a different search problem; mainly, it looks for the
shortest path between a searcher and a target on a weighted
graph. It does not apply group testing at all. However, it is
found that with new definitions and routines—mainly re-
lated to the metric of the search space and the distance mea-
sures used between the searcher and the target—a general-
ized version of this algorithm, which we call Informational
LRTA∗ (ILRTA∗) algorithm, leads to promising results for
the considered group testing search.

The ILRTA applies a group testing search to a set of
points, defined as a partition of the sample space. It uses
entropy-based distance measures, such as the Rokhlin dis-
tance (Rokhlin, 1967) and the Ornstein distance (Ornstein,
1974), to quantify the distances between different partitions
of the sample space. The distance measures satisfy the met-
ric requirements; therefore, they can be applied within a
similar framework of the LRTA∗ algorithm.

In this article, we study the main properties of the sug-
gested ILRTA∗ algorithm. We compare it against the opti-
mal Huffman search, which is an offline bottom-up search
procedure, and against the near-optimal GOTA, which is
an online top-down search procedure. We show that under
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166 Kagan and Ben-Gal

a bottom-up search condition with fixed information, the
ILRTA∗ generates an optimal Huffman search tree, while
under a top-down search condition it performs according
to the Generalized Optimum Testing Algorithm (GOTA).
To the best of our knowledge, such a unified scheme of
the two procedures and has not been previously proposed.
Moreover, unlike these two search procedures, the ILRTA∗
is more robust to changes of side information, such as the
new distance estimations from the searcher to the target or
new probability estimates of the target location. This prop-
erty is shown to yield a great advantage when such side
information is available; for example, when the assump-
tions regarding the location of the target change during the
search. The performance of the ILRTA∗ algorithm is stud-
ied by numerical simulations showing its superiority under
certain condition. Finally, the ILRTA∗ allows a straight-
forward generalization to a search by multiple searchers
after multiple targets (Kagan and Ben-Gal, 2010), which is
relevant to sensor fusion problems. It can be applied with
slight changes to a search after a moving target (Kagan and
Ben-Gal, 2006). Note that these two latter applications are
beyond the scope of this article.

The article is organized as follows. Section 2 presents a
review of the related literature. Section 3 describes a gen-
eral group testing model for an online testing procedure
and presents information-theoretic metrics that are later
used for the search. Section 4 formulates the suggested
ILRTA∗ algorithm and presents its main properties. It es-
tablishes the relations between the ILRTA∗ algorithm and
known information-theoretic testing algorithms, such as
the optimal offline Huffman search (Zimmerman, 1959)
and the near-optimal GOTA (Hartmann et al., 1982). Sec-
tion 5 presents simulated results and statistical comparisons
between the ILRTA∗ algorithm and known search proce-
dures. Section 6 provides a general discussion and summa-
rizes the work. The Appendix contains the proofs of the
statements that appear in the body of text.

2. Literature review

One of the earliest works on group testing was suggested by
Zimmerman (1959) and was based on the Huffman coding
procedure (1952), which is well known in information and
coding theory. The analogy between testing (e.g., to find
a nonconforming unit) and coding relies on the fact that
each unit in the set can be decoded by the sequenced testing
outcomes of subsets to which it belongs (Ben-Gal, 2004).
The length of the code is thus analogous to the length of the
testing procedure that is required to identify the noncon-
forming unit. Zimmerman’s offline method is constructed
by using the probability of each unit to be the nonconform-
ing one. An optimal testing tree is constructed offline by the
Huffman coding procedure and then the test procedure fol-
lows this testing tree, assuming that no new information is
revealed. Since the Huffman coding algorithm is optimal

in the sense of minimal average code length, the analogous
search procedure is optimal in the sense of minimal average
search length (Zimmerman, 1959).

Other group testing methods that are based on coding
procedures have been suggested. Ben-Gal (2004) analyzed
the popular weight balance tree group testing algorithm,
which is based on the simple principle of successive parti-
tions of the search set into equi-probable subsets (known
also as Shannon–Fano coding). At each step of the al-
gorithm, the subset that contains the searched item (i.e.,
nonconforming unit) is partitioned into equi-probable sub-
subsets and the process repeats itself until the searched for
item is found. Herer and Raz (2000) considered a similar
group testing search for a defective product in a lot pro-
duced by a process with a constant failure rate, as described
above.

A different online search approach that looks for the
shortest path between the search agent and the target has
been suggested by Korf (1990). He developed a real-time
version of the known A∗ algorithm that is based on an SLS
method with heuristic distance measures. His real-time al-
gorithm of search for a static target is known as the LRTA∗
algorithm. The LRTA∗ algorithm operates on a given graph
in which the vertices represent states (locations in the search
space in our case) while the edges between the states are
weighted (distances between locations in our case). In the
considered search problem, the LRTA∗ algorithm applies
heuristic distance estimations between the feasible target
states and the target’s state. The iterative LRTA∗ algorithm
finds the shortest path between the searcher’s initial state
and the target’s state.

Based on the LRTA∗ algorithm, Ishida and Korf (1991,
1995) suggested an algorithm to search for a moving tar-
get. The results of these algorithms were later reviewed by
Shimbo and Ishida (2003). Subsequently, Bulitko and Lee
(2006) and Bulitko et al. (2007) proposed a unified frame-
work for a general search procedure for the LRTA∗ algo-
rithm. Koenig and Simmons (1995), Koenig and Likhachev
(2006), and Sun et al. (2009) considered an implementation
of the LRTA∗ algorithm over nondeterministic domains
and suggested suitable adaptive algorithms that can be ap-
plied for the search for both static and moving targets.
Other versions of the LRTA∗ algorithm were developed by
the IRCL research group (IRCL Research Group, 2012).
Note that all of the above-mentioned algorithms as op-
posed to this study do not follow a group testing approach;
thus, the searcher checks a single point in the domain at
each search stage. Moreover, these algorithms are focused
on finding the shortest path between the searcher and the
target and not on finding the target itself, as aimed at in
this study.

Using an information-theoretic approach, Hartman
et al. (1982) suggested a near-optimal search procedure
known as the GOTA. In this online algorithm, policy de-
cision and searching are conducted simultaneously. The
GOTA follows a general objective of a maximum entropy
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Informational learning and group testing 167

search, while implementing some properties of the available
partitions of the sample space. In this article, we general-
ize the GOTA by using SLS principles and the ideas that
appear in the LRTA∗ algorithm (Korf, 1990).

Further generalization of the information-theoretic pro-
cedures of search was also suggested by Abrahams (1994)
and has been applied to group testing tasks and to the con-
struction of decision trees (Ben-Gal, 2004; Ben-Gal et al.
2008; Herer and Raz, 2000). Other group testing methods
have been suggested under specific assumptions (Gupta
and Malina, 1999). Graff and Roeloffs (1974) considered a
group testing procedure in the presence of noise. Yadin and
Zacks (1988, 1990) considered shadowing and visibility
conditions for a search in an heterogeneous sample space in
the presence of obstacles. Related studies of the considered
search problem were constructed by relying on dynamic
programming and stochastic optimization methods (Ross,
1983; Bertsekas, 1995).

3. A group testing search scheme

3.1. General formulation of the problem

Let us start with a general formulation of the search proce-
dure that corresponds to Dorfman’s group testing scheme
(Dorfman, 1943). Recall that for the purpose of generality
the nonconforming unit is called the target, while the testing
agent is called the searcher.

Let X = {x1, x2, . . . , xn} be a finite sample space of n
points where the target can be located. At each time mo-
ment t = 0, 1, 2, . . ., the searcher chooses a subset At ⊂ X
and observes it. It is assumed that the observation is per-
fect; hence, the resulting observation zt = 1 if the target is
located in one of the points of At, and zt = 0 otherwise. All
subsets A ⊂ X that are available to the searcher are included
in the search space X. If the searcher’s choice of subsets A is
not restricted, then the search space is the power set X = 2X

of the sample space X that consists of all possible subsets
of X , including the empty set ∅ and the set X itself.

The general search procedure of search after a static tar-
get is formulated as follows (Ross, 1983; Bertsekas, 1995):

1. The target is located at point x0 ∈ X, which is unknown
to the searcher.

2. At time moment t, the searcher chooses a subset At ∈ X,
observes it, and obtains an observation result:

zt = 1(x0, At) =
{

1 ifx0 ∈ At,

0 otherwise.

3. If zt = 1 and At = {x0} or if zt = 0 and X\At = {x0} then
the search terminates. Otherwise, the time increases as
t = t + 1 and the search continues from step 2.

It is assumed that the searcher does not know where
the target is located; however, he/she knows the probabil-

ity distribution of the target’s location over points in the
sample space. This is equivalent to having the distribution
of the location of a nonconforming unit, which is a viable
assumption when the characteristics of the production sys-
tem are known (Herer and Raz, 2000; Ben-Gal, 2004). In
addition, it is assumed that the searcher has perfect infor-
mation of the observation result zt; i.e., without observa-
tion noise. The goal of the study is to find a test policy for
choosing the subsets At ∈ X such that the search procedure
terminates in a minimal expected number of steps.

The approach to search over partitions of the search
space now follows.

Recall that at each time moment t the searcher obtains a
perfect observation result zt ∈ {0, 1}. The selection of a set
At ∈ X and its observation implies that if zt = 1(x0, At) =
1, then zt = 1(x0, X\At) = 0 and vice versa. Hence, such a
selection can be represented by a partition that we call the
searcher’s partition, αt = {At, X\At}. Similarly, the target
location can be represented by the, target’s partition τ =
{{x0}, X\{x0}}, where x0 ∈ X is the point in which the target
is located. Accordingly, the above general search procedure
can be reformulated on the set χ of partitions as follows
(Jaroszewicz, 2003; Kagan and Ben-Gal, 2006):

1. The target chooses a partition τ ∈ χ , which is unknown
to the searcher.

2. At time moment t, the searcher chooses a partition αt

∈ χ .
3. If αt = τ or αt is a refinement of τ then the search ter-

minates. Otherwise, time increases to t = t + 1 and the
search continues from step 2.

The searcher’s goal, as indicated above, is to find a policy
for choosing a sequence of partitions αt ∈ χ that guaran-
tees termination of the search within a minimal expected
number of steps. In the algorithms below the searcher is
allowed to choose both binary and non-binary partitions
that correspond to the number of possible subgroups. Each
subgroup is represented by a symbol that is associated with
the result of the group test. The partitions are refined it-
eratively on the basis of previously chosen partitions. For
example, in a ternary partition the three possible groups of
items might be associated with positive, negative, and un-
determined results. It is assumed that the searcher’s choice
is based on the observation results, in particular, by us-
ing these to update the probability of the target’s location.
Notice that from a group testing point of view, a feasible
selection of a final partition γ = {X, ∅} corresponds to the
test of a full sample space X.

In the next sections we implement the general search
procedure by relying on the SLS/LRTA∗ algorithm (Korf,
1990) and particularly by defining partitions as states on the
LRTA∗ graph. Since the general LRTA∗ algorithm requires
a distance measure between states, we start by introducing
two metrics that can be implemented directly on the set of
partitions.
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168 Kagan and Ben-Gal

3.2. Distance measures and search space metrics

Recall that X = {x1, x2, . . . , xn} is a finite sample space. De-
fine a probability mass function pi = p(xi ) = Pr{x0 = xi }
representing the probability of the target being located at
point xi ∈ X (or, equivalently, the probability of a unit to
be nonconforming), i = 1, 2, . . . , n, where

∑n
i=1 p(xi ) = 1.

We call it the location probability. If there is no available
information on the target location, then it is assumed that
the probability is uniform p1 = p2 = . . . = pn based on the
principle of the maximum entropy (Cover and Thomas,
1991).

Let χ be a set of partitions of the sample space X and
let α = {A1, A2, . . .} ∈ χ , Ai ∩ Aj = ∅, i �= j , ∪A∈α = X,
be a partition of X . For a subset A ∈ α, denote p(A) =∑

x∈A p(x). The entropy of a partition α is defined as fol-
lows (Sinai, 1977):

H(α) = −
∑

A∈α
p(A) log p(A), (1)

where, following the conventions in information theory
(Cover and Thomas, 1991), the logarithm is taken to base
2 and 0 log 0 ≡ 0.

Consider a partition β = {B1, B2, . . .} ∈ χ , Bi ∩ Bj = ∅,
i �= j . Then, the conditional entropy of partition α given
partition β is defined as (Sinai, 1977)

H(α | β) = −
∑

B∈β

∑
A∈α

p(A, B) log p(A | B), (2)

where p(A, B) = p(A∩ B) and p(A | B) = p(A∩ B)/
p(B).

Denote the refinement between two partitions α and β by
“≺.” If for every A ∈ α there exists B ∈ β such that A ⊆ B,
then we say that α refines β or that α is a refinement of
β and write β ≺ α. The properties of the entropy and the
conditional entropy of partitions are given by the following
theorems. These properties are used by the proposed search
algorithm.

Theorem 1 (Sinai, 1977). For the partitions of X the follow-
ing statements hold:

(i) if α ≺ β then H(α) ≤ H(β);
(ii) H(α | β) = 0 if and only if α ≺ β;

(iii) if α ≺ α′ then H(α | β) ≤ H(α′ | β);
(iv) if β ≺ β ′ then H(α | β ′) ≤ H(α | β).

Theorem 2 (Sinai, 1977; Hartmann et al., 1982). Let α and
β be two partitions. Then β � α if and only if H(β | α) =
H(β) − H(α).

Let us now present the Rokhlin distance (Rokhlin, 1967)
that initially was suggested for the purposes of dynamical
systems theory. The Rokhlin distance between partitions α

and β of the sample space is defined as follows (Rokhlin,
1967):

d(α, β) = H(α | β) + H(β | α), (3)

where conditional entropy is defined by Equation (2).

In the next considerations, the metric properties of the
Rokhlin distance (Sinai, 1977) are used:

(i) d(α, β) ≥ 0;
(ii) d(α, α) = 0;

(iii) d(α, β) ≤ d(α, ξ ) + d(ξ, β) for any partition ξ of X .

Note that independent of Rokhlin (1967), López De
Mántaras (1991) presented a definition of the same met-
ric for partitions of the finite sample space X and applied
it to attribute selection and search trees. The same form of
an informational distance between two random variables
was also defined by Lloris-Ruiz et al. (1993). On the basis
of this definition, Jaroszewicz (2003) considered partitions
of X with equi-probable points and applied it to prob-
lems of data mining. An independent research in data min-
ing based on the similar ideas was conducted by Peltonen
(2004).

Let us now clarify the relation between the Rokhlin met-
ric and the popular Shannon’s mutual information concept
that is used in known search algorithms. Similar to the joint
entropy and the mutual information between two random
variables (Cover and Thomas, 1991), the joint entropy and
the mutual information between two partitions α and β of
X are defined as follows:

H(α, β) = H(α) + H(β | α) = H(β) + H(α | β), (4)
I(α; β) = H(α) − H(α | β) = H(β) − H(β | α). (5)

Thus, based on Equations (5) and (3), the relation between
the mutual information I(α; β) and the Rokhlin metric
d(α, β) for the partitions α and β is the following:

d(α, β) = H(α, β) − I(α; β). (6)

The Ornstein distance between partitions is now pre-
sented. Let α and β be two partitions of the sample space X
with a probability mass function p. The Ornstein distance
between α and β is defined as follows (Ornstein, 1974):

dOrn(α, β) = p(X \ ∪k
i=1 (Ai ∩ Bi )), (7)

where Ai ∈ α, Bi ∈ β, and k = max(|α|, |β|). Here |· is the
cardinality of the partition. If |α| > |β|, then β is completed
by empty sets, and if |β| > |α|, then empty sets are added
to α.

The Ornstein distance meets the metric requirements
(Ornstein, 1974). The relation between the Rokhlin dis-
tance and the Ornstein distance is given in Lemma 1. This
lemma supports the admissibility property of the distance
and its estimation, which is required by the LRTA∗ algo-
rithm and will be used in the ILRTA∗ algorithms suggested
below.

Lemma 1. If α and β are partitions of the same space X with
probability function p, then dOrn(α, β) ≤ d(α, β).

The proof of this lemma is given in the Appendix.
In light of Theorems 1 and 2, the distances depend on the

structure of the considered partitions. Below we consider
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Informational learning and group testing 169

the dependence of the Rokhlin distances on the location
probabilities defined on the sample space X .

In general, let (χ, ≺) be the lattice of partitions of the
sample space X with a partial order determined by the
refinement relation ≺. Denote the Rokhlin metric for a
uniform distribution of the target’s locations (i.e., an equi-
probable sample space X) by du(α, β) and the Rokhlin met-
ric for some other probability mass function p by dp(α, β).
Let θ = {X, ∅} be the trivial partition of the sample space
X . Then, the following lemma can be formulated.

Lemma 2. If every partition α ∈ (χ, ≺), α �= θ , satisfies
Hp(α) �= Hu(α), then for every pair (α, β), α, β ∈ (χ, ≺) it is
true that dp(α, β) < du(α, β).

In other words, the lemma states that the Rokhlin dis-
tance depends on the probability distribution over a sam-
ple space, and for the uniform distribution the values of
the Rokhlin distances are greater than those obtained by
any other distribution. As seen below, such a property pro-
vides a basis for the probabilities updating scheme during
the search, while maintaining the admissibility requirement
of the distances. The proof of this lemma is given in the
Appendix.

In the next section we apply the presented metrics to
the formulated search problem and implement them in the
proposed ILRTA∗ algorithm.

4. The ILRTA∗ algorithm and its main properties

The proposed ILRTA∗ algorithm can be considered in par-
allel with the LRTA∗ algorithm (Korf, 1990). Similar to the
LRTA∗, the ILRTA∗ algorithm operates on a graph. How-
ever, unlike the LRTA∗, in the ILRTA∗ the graph vertices
represent partitions and not states. These partitions stand
for the possible results of the searcher’s group tests. For
example, if the searcher tests a subset of points where the
target can be located, the relevant partition of points fol-
lowing the test is represented by the corresponding vertex
in the graph. The searcher’s decision to move to a certain
vertex in the graph represents a selection and an execution
of a specific group test. The target location can be repre-
sented by the target’s partition that corresponds to the tar-
get’s location point and the complementary subset of all the
other points. The search is terminated when the searcher
selects a partition that is either identical or more refined
with respect to the target’s partition; we thus call it the fi-
nal partition since the search ends at that stage. Reaching
such a partition implies that the searcher obtains the nec-
essary information regarding the target location, as a result
of the group test. Similar to the LRTA∗ algorithm (Korf,
1990), the edges between the vertices in the ILRTA∗ algo-
rithm are weighted by the corresponding distances mea-
sures. However, since these distance measures are between
pairs of partitions, the ILRTA∗ algorithm applies specific

information-theoretic distance measures and, particularly,
it uses the Rokhlin distance metric, which is based on the
relative entropies of these partitions (Rokhlin, 1967).

Similarly to other SLS procedures (Koenig and
Simmons, 1995; Koenig and Likhachev, 2006), in the
ILRTA∗ algorithm the partitions with known distances to
the current searcher’s partition define a neighborhood. The
distances to all other points in the graph have to be esti-
mated and refined when new information is obtained from
the next group tests. The iterative ILRTA∗ algorithm seeks
to find the shortest path between the searcher’s partition
and the target’s partition and, thus, selects a path that
corresponds to the group tests results. In summary, sim-
ilar to other search algorithms, including the LRTA∗, the
ILRTA∗ implies a heuristic search based on distance esti-
mations between the target’s partition and feasible search
partitions. The uniqueness of the ILRTA∗ is that it uses in-
formational metrics and non-binary partitions to represent
a group testing search process over a graph of partitions
(see Jaroszewicz (2003) and Peltonen (2004)).

As indicated above, the ILRTA∗ uses the Rokhlin metrics
as heuristic distance measures between the searcher’s and
the target’s partitions. As shown in later sections, the im-
plementation of such metrics results in an algorithm that
generalizes known information-theoretic search methods
and can be applied to practical problems as described in
the Introduction, including, for example, the search after a
nonconforming unit in a batch. Let us now further explain
the main concepts of the ILRTA∗ search.

Recall that X = {x1, x2, . . . , xn} is a sample space with lo-
cation probabilities pi = p(xi ), i = 1, 2, . . . , n,

∑n
i=1 pi =

1, and let χ be a set of partitions of X that includes
both the trivial partition {X, ∅} and the discrete partition
{{x1}, {x2}, . . . , {xn}} of the sample space X . Note that if
there is no a priori knowledge about the location prob-
abilities, the ILRTA∗ can be initiated with uniform (equi-
probable) probabilities and refine the distances as the search
proceeds and new information is gathered. Using uniform
probabilities will extend the search time until the target is
found. These probabilities are used to find the distance be-
tween possible partitions in the search graph. In particular,
assume that for every pair of partitions α, β ∈ χ one can ap-
ply the Rokhlin distance d(α, β) and a distance estimation
d̃(α, β) such that they satisfy:

d̃(α, β) ≤ d(α, β), α, β ∈ χ. (8)

Property (8) is called the admissibility property. Note that
following Lemma 1, one can use the Ornstein metric as a
distance estimation; i.e., d̃(α, β) = dOrn(α, β).

Let γ ∈ χ be a final partition that satisfies the goal
of the search; thus, γ guarantees that the searcher finds
the target. In its limit, the final partition is equivalent to
the discrete partition γ = {{x1}, {x2}, . . . , {xn}}, although
such a refined partition is not always needed (for exam-
ple, if the target is located at point x2 then a final parti-
tion γ = {{x1}, {x2}, {x3, . . . , xn}} is enough for the searcher
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170 Kagan and Ben-Gal

to find the target without further refinements). Note that,
without loss of generality, the admissibility property (8) en-
ables the searcher to use a fixed “optimistic” distance es-
timation d̃(α, γ ) = 0 between a candidate partition α ∈ χ

(that represent a candidate group test for the next search
step) and the final partition γ (as well as between any pair
of partitions in the graph). This distance estimation is con-
sidered “optimistic,” since it represents an a priori assump-
tion of the searcher that the candidate partition α ∈ χ will
result in finding the target. Using such an estimation is
conservative with respect to the search time: it prolongs the
converging time of the ILRTA∗ algorithm, as shown later,
since the distance estimations between any two partitions,
including the final partition γ , can be set to zero at the
beginning of the search and are gradually refined during
the search until they converge to their real distance values.
The refinement of the distances is based on the fact that in
the neighborhood of a partition the distance estimates are
accurate.

Neighborhood of states is a key concept in SLS al-
gorithms and, thus, also in the ILRTA∗ algorithm: the
distance estimation is always accurate between neighbor
states. The neighbors in the suggested ILRTA∗ algorithm
are defined by the proposed informational distances be-
tween the partitions. Practically, it means that when the
searcher reaches a certain (current) partition, for exam-
ple, γ = {{x1, x2}, {x3, . . . , xn}}, there is a subset of neigh-
borhood partitions that often corresponds to a refinement
of this partition; for example, γ = {{x1}, {x2}, {x3, . . . , xn}},
with an accurate distance measure from the current par-
tition that can be reached by a certain group test. If the
searcher selects to move to this partition (vertex in the
graph) a new subset of neighborhood partitions is available;
e.g., γ = {{x1}, {x2}, {x3}, {x4, . . . , xn}}, and the process of
learning continues until the target is found. Moreover, say
that at a certain point in time the searcher is exposed to new
(external) side information that changes the location prob-
abilities (for example, in the nonconforming unit example
the new information indicates that it is more reasonable
to believe that the nonconforming unit is located toward
the end of the batch) then this information is instanta-
neously absorbed in the new location probabilities (e.g.,
using a Bayesian update scheme) and transformed to new
distance measures that are used by the searcher to select the
next group test. Note that this notion of online local learn-
ing updates and convergence is very different from offline
search procedures that assume that all of the information
has to be taken into account at the beginning of the search
to define a priori all the search steps.

Formally, for any partition α ∈ χ , the non-empty parti-
tions set N(α) ⊂ χ is the neighborhood of the partition α if
set N(α) meets the following requirements.

1. α /∈ N(α).
2. For every partition ξ ∈ N(α) it follows that d̃(ξ, α) =

d(ξ, α).

The first requirement is used to avoid staying at the cur-
rent partition, while the second requirement specifies an
“optimistic” assumption, which indicates that the searcher
knows the exact distances at least to the neighboring par-
titions. Note that if for some initial steps of the ILRTA∗,
assumption 2 is violated, then the searcher can assume that
the distance to all partitions is less than the entropy of
the sample space. That means that the searcher starts with
a neighborhood that includes all possible partitions and
then, after few iterations of estimation updates, the above
assumption becomes valid for smaller neighborhoods.

Based on the informational distances and the above defi-
nitions, the suggested ILRTA∗ algorithm is outlined as fol-
lows. Let θ be an arbitrary initial partition, γ be the final
partition, and d̃0(α, γ ), α ∈ χ , be the initial distance esti-
mations. Assume that the distance estimations are specified
by zeros, or a certain method of their calculation preserving
admissibility requirement (8)—e.g., the Ornstein distance
formula (7)—is given. Notice that the values d̃0(α, γ ) de-
note the estimations to the final partition, while the values
d̃(ξ, α), as indicated in the above neighborhood require-
ment (2), denote the estimations between the neighboring
partitions. Then, the ILRTA∗ algorithm follows the proce-
dure below.

Algorithm ILRTA∗.

Given θ, γ, α ∈ χ , and d̃0(α, γ ).

1. Init distance estimations by d̃0(α, γ ): d̃(α, γ ) ←
d̃0(α, γ ), α ∈ χ .

2. Init current partition αcur by initial partition θ : αcur ←
θ .

3. While d(αcur, γ ) �= 0 do
a. Choose next partition αnext:

αnext ← arg min
α∈N(αcur)

{d(αcur, α) + d̃(α, γ )}.

b. Set distance estimation for current partition αcur:

d̃(αcur, γ ) ← max

{
d̃(αcur, γ ),

min
α∈N(αcur)

{d(αcur, α) + d̃(α, γ )}
}

.

c. Move to next partition:

αcur ← αnext.

End while.

The execution of the ILRTA∗ algorithm is illustrated in
Fig. 1. In the figure, the triangles stand for the searcher’s
partitions, the star sign stands for the target’s location, as
reflected by the final partition, and the circles denote some
arbitrary partitions in the space χ that can be chosen by
the searcher for inspection. Note that if the neighborhood
set is limited to few (e.g., 12) candidate points, the recursive
implementation of the ILRTA∗ (Ben-Gal et al., 2007; Ben-
Gal et al., 2008) can handle large sample space of thousands
of points.
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Informational learning and group testing 171

Fig. 1. Execution of the ILRTA∗ algorithm.

The figure illustrates a case where the searcher’s location
is represented by partition αi . The neighborhood N(α) is
represented by the dashed curve; thus, the distances to all
partitions within the neighborhood, such as partition α j ,
are known exactly and are equal to their estimates. The
distances from αi to the target’s partition are estimated
by d̃(αi , γ ), which is not necessarily equal to the accurate
distance d(αi , γ ).

Notice that, as indicated above, it is assumed that if final
partition γ is known, then the searcher calculates distance
estimations using this partition. If, in contrast, such a par-
tition is unknown, then the searcher, for example, can spec-
ify it as a discrete partition γ = {{x1}, {x2}, . . . , {xn}} and
calculate distance estimations to this partition. Any side in-
formation that changes the location probability will result
in new estimated distances that will affect the searcher’s
selection.

Now let us show that for the ILRTA∗ algorithm the ba-
sic properties of the LRTA∗ algorithm (Korf, 1990) hold.
Below new proofs of these properties are provided based
on the proposed informational metrics. These properties
provide an intuition to the implementation of the ILRTA∗
algorithm to classification problems (Ben-Gal et al., 2007;
Ben-Gal et al., 2008) that are used for automated fault
identification, as well as to studies of a moving target search
(Kagan and Ben-Gal, 2006, 2007) that are relevant for qual-
ity inspection of dynamic faults. We proceed with the main
properties of the ILRTA∗ algorithm.

Theorem 3. If for every partition α ∈ χ the admissibility as-
sumption d̃0(α, γ ) ≤ d(α, γ ) holds, then the trial of the
ILRTA∗ algorithm always terminates.

Theorem 3 states that at the end of step 3 of the ILRTA∗ al-
gorithm, when the trials are completed, the target is found.
The proof of the theorem is based on the next two lemmas.
Lemma 3 guarantees that the algorithm selects the final
partition while it is in the neighborhood of the current par-
tition. Lemma 4 states that the algorithm does not return to
the previous partition at its next step. The complete proof
of this theorem is given in the Appendix.

Lemma 3. In the ILRTA∗ algorithm, if γ ∈ N(α) then the
partition selection is α ← γ and the estimation update is
d̃(α, γ ) ← d(α, γ ).

The proof of this lemma is given in the Appendix.

Lemma 4. Let the current partition be αcur = β and its pre-
vious partition be α. If there exists a partition ω ∈ N(β),
ω �= α, then in the next step, the ILRTA∗ algorithm will se-
lect ω.

The proof of this lemma is given in the Appendix.
Let the algorithm be applied to certain input data

θ, γ, α ∈ χ , and d̃0(α, γ ), and it implements definite meth-
ods for calculating distances and distance estimations.
Then, during its execution, the algorithm changes the dis-
tance estimations as specified in Step 3b. Such an execution
of the algorithm over given data is called a trial. The next
lemma guarantees that the ILRTA∗ algorithm preserves
the admissibility property (8) of distances d and distance
estimations d̃.

Lemma 5. Throughout the trials of the ILRTA∗ algorithm,
the admissibility property d̃(α, γ ) ≤ d(α, γ ) holds for every
partition α ∈ χ .

The proof of this lemma is given in the Appendix.
Finally, assume that after the trial the obtained distance

estimations are saved and are used as initial distance esti-
mations for the next trial. Let us show that the suggested
ILRTA∗ algorithm obtains an optimal solution in the sense
of informational distances between partitions in the parti-
tions space χ .

Theorem 4. Solutions of the iterated trials of the ILRTA∗
algorithm converge to the sequence of partitions having a
path length d(θ, γ ), where d̃(α, γ ) = d(α, γ ) for all α ∈ χ .

Thus, the proposed routine is to repeatedly execute the
ILRTA∗ algorithm, while keeping the updated distance re-
sults in the shortest path from the starting partition of the
searcher to the target partition. The proof of this theorem
is given in the Appendix.

The above formulated statements show that the sug-
gested ILRTA∗ algorithm maintains similar properties to
the LRTA∗ algorithm (Korf, 1990). Moreover, a determina-
tion of different probability measures on the sample space
X allows us to apply the suggested ILRTA∗ algorithm for
various tasks that are different from the considered search
problem. One such example is the use of the ILRTA∗ prin-
ciples for the construction of classification trees (Ben-Gal
et al., 2007; Ben-Gal et al., 2008). Note that any level in
the tree corresponds to a partition of the classified items;
thus, the same distance measures can be applied to find the
best partitioning variable. Further discussion on classifica-
tion trees is available in the next section, particularly when
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172 Kagan and Ben-Gal

comparing the ILRTA∗ to the GOTA, which is a general-
ized version of the Id3 algorithm (Quinlan, 1993).

4.1. The ILRTA∗ and other information-theoretic search
algorithms

In the previous section, it was shown that the proposed
ILRTA∗ algorithm converges with trials to the optimal
solution. In this section, we show how the ILRTA∗, un-
der certain conditions, produces optimal or near-optimal
search solutions in a single trial—solutions that are iden-
tical to those obtained by known information-theoretic
search algorithms, such as the offline Huffman and the
online GOTA search procedures. These entropy-based al-
gorithms have been extensively used for group testing ap-
plications using nonconforming units trees (Herer and Raz,
2000; Ben-Gal, 2004).

4.1.1. The ILRTA∗ algorithm and the optimal Huffman
search

We start by comparing the ILRTA∗ algorithm with the
optimal Huffman search procedure (Zimmerman, 1959).
The Huffman search method is based on the Huffman cod-
ing procedure (Huffman, 1952; Cover and Thomas, 1991)
and is based on an offline construction stage. In this stage, a
Huffman search tree is constructed. Later, the search is con-
ducted according to the constructed tree. Below we show
that under the requirements of the Huffman procedure the
suggested ILRTA∗ algorithm results in the Huffman search
tree.

Let αl be a partition corresponding to the leaves of the
Huffman tree; thus, l stands for the level of the deepest
branch in the tree. The level of the root is zero, and γ is the
final partition defined by the tree’s leaves. Denote A′

min =
arg minA∈γ p(A) and A′′

min = arg minA∈γ \A′
min

p(A), where,
as above, p(A) = ∑

x∈A p(x) and p(X) = ∑
x∈X p(x). Then,

according to the Huffman procedure (Huffman, 1952;
Cover and Thomas, 1991), partition αl− j−1, which cor-
responds to the (l − j − 1)th level of the tree, j =
0, 1, . . . , l − 1, is the following:

αl− j−1 = {
A′

min ∪ A′′
min, Ak

}
,

where Ak ∈ αl− j , Ak �= A′
min, Ak �= A′′

min, k = 1, 2, . . . ,

|αl− j | − 1.
We say that partitions α and β are Huffman neighbors, if

one is a refinement of the other; i.e., if

α = {Bi ∪ Bj , B1, B2, . . . , Bi−1,

Bi+1, . . . , Bj−1, Bj+1, . . . , Bn},
or

β = {Ai ∪ Aj , A1, A2, . . . , Ai−1,

Ai+1, . . . , Aj−1, Aj+1, . . . , Am},
where Ai ∈ α and Bi ∈ β. Such a neighborhood is denoted
by NHuf( · ). Indeed, if α ∈ NHuf(β) then α ≺ β. As noted

above, we assume that α /∈ NHuf(α), α ∈ χ , and that if α ∈
NHuf(β), then d̃(α, β) = d(α, β).

By the use of the Huffman neighbors one can demon-
strate that the selection of the next partition by the Huff-
man algorithm is determined by the conditional entropy.
The formal decision-making rule that is used is given in the
next lemma.

Lemma 6. According to the Huffman procedure, given αl and
αcur ≺ αl , the next partition αnext among all α values that are
Huffman neighbors of αcur is chosen as follows:

αnext = arg maxα∈NHuf (αcur){H(αl | αcur) − H(αl | α)},
where H(α | β) stands for the conditional entropy of partition
α given partition β.

The proof of this lemma is given in the Appendix.
Lemma 6 provides the basic formalization for imple-

menting the Huffman procedure over the partitions space,
as follows:

Huffman procedure.
Given α0, αl , χ ,

1. Init current partition αcur by αl .
2. While H(αcur | α0) �= 0 do

a. Choose next partition αnext:

αnext ← arg max
α∈NHuf (αcur)

{H (αl | αcur) − H (αl | α)} ,

or, since α ∈ NHuf (αcur), as

αnext ← arg max
α∈NHuf (αcur)

{H (α)} .

b. Set partitions set as:

χ ← χ\{αnext}.
c. Move to next partition:

αcur ← αnext.

End while.

We can now draw the relation between the ILRTA∗ al-
gorithm and the Huffman procedure. Let α, β ∈ χ be two
partitions of the sample space X , θ be an initial partition,
and γ be the final partition. Then, based on the above
procedure, the following theorem can be stated.

Theorem 5. Let d̃ (α, β) = 0 if α /∈ NHuf (β) and β /∈
NHuf (α). Then, if γ ≺ θ , the search tree constructed by the
ILRTA∗ algorithm is equivalent to the Huffman tree con-
structed by the Huffman procedure.

The proof of this theorem is given in the Appendix.
Theorem 5 states that the ILRTA∗ algorithm under the

Huffman conditions generates the same search tree as the
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Fig. 2. Bottom-up Huffman tree and partitions of the sample
space.

Huffman procedure. Thus, under these conditions the sug-
gested ILRTA∗ algorithm is optimal in the sense of a
minimal average number of search steps as the Huffman
procedure.

The relation between the ILRTA∗ algorithm and the
Huffman procedure can be illustrated by the following
small example. Let X = {x1, x2, x3} be a sample space
with location probabilities p(x1) = 0.1, p(x2) = 0.3, and
p(x3) = 0.6. The partition space χ of the sample space X
consists of the following partitions:

α0 = {{x1}, {x2}, {x3}}, α1 = {{x1}, {x2, x3}},
α2 = {{x2}, {x1, x3}}, α3 = {{x3}, {x1, x2}},
α4 = {{x1, x2, x3}, ∅}.

Recall that the Huffman algorithm creates a decision
tree in a bottom-up procedure; i.e., the initial partition θ

for this procedure is θ = α0 = {{x1}, {x2}, {x3}} and the final
partition γ is γ = α4 = {{x1, x2, x3}, ∅}. As indicated above,
a choice of final partition γ = {X, ∅} is associated with the
test of a full sample space X.

Given the above location probabilities and the initial and
final partitions, the Huffman tree has a form shown on the
left-hand side of Fig. 2. On the right-hand side of the figure
we present the possible partitions of the sample space X
that correspond to the relevant level of the tree.

In Fig. 2 it is seen that the initial partition θ =
α0 = {{x1}, {x2}, {x3}} has three possible Huffman neigh-
bors α1 = {{x1}, {x2, x3}}, α2 = {{x2}, {x1, x3}}, and α3 =
{{x3}, {x1, x2}}. From these partitions, the Huffman pro-

cedure selects partition α3 = {{x3}, {x1, x2}}. Thus, the first
test to apply is either to look for the nonconforming unit at
x3 or to conduct a group test for nonconformity at {x1, x2}.

Now let us consider the actions of the ILRTA∗ al-
gorithm on the same partitions space χ = {θ = α0, α1,

α2, α3, γ = α4} with the defined Rokhlin distance between
the partitions. The graph that represents the partition space
χ and the matrix of the Rokhlin distances among the parti-
tions are shown in Fig. 3. Note that the ILRTA∗ algorithm
in this case starts from the maximal refined partition among
all possible partitions of the sample space and it ends in the
less refined partition.

As shown in Fig. 3, a minimal non-zero Rokhlin dis-
tance d between the initial partition θ = α0 and the other
partitions α1, α2, and α3 is reached with partition α3, which
is selected by the ILRTA∗ algorithm. The final partition
γ = α4 is then selected since it is the only available parti-
tion in the Huffman neighborhood α3 and it gives the mini-
mum distance over all non-zero Rohklin distances. Thus, as
expected, both the Huffman and the ILRTA∗ procedures
result in the same sequence of partitions for group testing.

In the next section we consider the relation between the
ILRTA∗ algorithm and the top-down GOTA, where all of
the points are grouped together in the same subset.

4.1.2. The ILRTA∗ algorithm and the GOTA
We start by describing the GOTA (Hartmann et al., 1982)
in terms of its actions over the partitions set. Let us note
that the GOTA is one of the original top-down search pro-
cedures and it has been shown to converge to the optimal
solution with respect to the minimum number of search
steps. It utilizes an entropy-based criterion that was later
applied in a similar fashion to many popular data mining
search algorithms, such as C.45 and Id3 (Quinlan, 1993).

Again, let X be a sample space given the location prob-
abilities, and let χ be a set of all partitions of X . In ad-
dition, let g : χ × χ → R+ be some cost function, which
indicates the cost g(α, β) > 0 of the step from partition α to
partition β.

The GOTA, as a top-down procedure, starts from the
initial trivial partition θ = {X, ∅} and proceeds to the fi-
nal partition γ � θ . Thus, in terms of refinement rela-
tions, in the GOTA the relations between the partitions are
opposite to the relations obtained by the Huffman proce-
dure. Suppose that each test of the GOTA has a binary
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Fig. 3. Implementation of the ILRTA∗ algorithm on the partitions space.
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174 Kagan and Ben-Gal

outcome. If αcur is the current partition, then for the next
chosen partition αnext ∈ χ it holds true that θ ≺ αcur ≺
αnext ≺ γ and |αnext| = |αcur| + 1.

In the GOTA, for a given current partition αcur, the next
partition αnext is selected by the following criterion:

arg maxα∈χ (H (γ |αcur) − H (γ |α)/g (αcur, α)) ,

over such partitions α ∈ χ that α � αcur and |α| = |αcur| +
1, and the GOTA terminates when the selected partition
satisfies αcur � γ .

Assume that all possible tests that partition the sample
space are available. We say that partition β is a GOTA-
neighbor of partition α if β � α and |β| = |α| + 1. In other
words, if β = {B1, B2, . . . , Bn} and it is a neighbor of α,
then

α = {Bi ∪ Bj , B1, B2, . . . , Bi−1, Bi+1, . . . , Bj−1,

Bj+1, . . . , Bn},
where Bi ∈ β. Such a neighborhood is denoted by NG( · ).
Using these terms, the GOTA can be formalized over the
set of partitions as follows.

Algorithm GOTA.

Given α0, γ , χ ,

1. Init current partition αcur by α0.
2. While H(γ | αcur) �= 0 do

a. Choose next partition αnext:

αnext ← arg max
α∈NG(αcur)

{
H (γ | αcur) − H (γ | α)

g (αcur, α)

}
.

b. Set partitions set as:

χ ← χ\{αnext}.
c. Move to next partition:

αcur ← αnext.

End while.

In the original GOTA (Hartman et al., 1982), the cost
function g(α, β) = ∑

A∈(β\α) p(A) is applied. If, instead, for
every pair of partitions (α, β) ∈ χ × χ , α �= β, it is assumed
that g(α, β) = 1, then the selection by the GOTA is equiv-
alent to the selection by the Huffman procedure. Note,
however, that the Huffman procedure and the GOTA use
different neighborhoods and different termination condi-
tions that represent the different directions of the decision
tree: bottom-up by the Huffman procedure and top-down
by the GOTA.

Denote by s = 〈θ = α0, α1, . . . , αn � γ 〉 a sequence of
the partitions such that αi−1 ≺ αi and | αi |=| αi−1 | +1,
i = 1, 2, . . . , n, and let S be a set of all available sequences s.
For the GOTA, the following theorem is proven (Hartman
et al., 1982).

Theorem 6 (Hartman et al., 1982). If for the cost function g
it is true that g(α, β) ≤ g(α, ξ ) + g(ξ, β), α, β, ξ ∈ χ , then
the GOTA selects the sequence s with the minimal sum of
costs G = ∑n

i=1 g(αi−1, αi ).

In other words, the theorem states that the GOTA is near
optimal in the sense of the given cost function.

Let us now clarify the relation between the ILRTA∗ al-
gorithm and the GOTA, while assuming that the GOTA’s
requirements for the partition sequences and for the cost
function g are valid. Assume that the selection of the next
partition in step 3a of the ILRTA∗ algorithm is weighted
by a non-zero cost g(αcurr, α) such that

αnext ← arg min
α∈N(αcur)

{
1

g(αcur, α)

(
d (αcur, α) + d̃(α, γ )

)}
.

Then the following statement holds true.

Theorem 7. If d̃(α, β) = 0 for α /∈ NG(β), β /∈ NG(α) and
if the ILTRA∗ and the GOTA have the same cost function
g, for which g(α, β) = −g(β, α), α, β ∈ χ , then the ILTRA∗
and the GOTA procedures result in the same search plan.

The proof of this theorem is given in the Appendix.
From the near-optimality of the GOTA that is stated by

Theorem 6, and from the equivalence between the ILRTA∗
algorithm and the GOTA, it follows that under the require-
ments of Theorem 7, the ILRTA∗ algorithm is near optimal
in the same sense as the GOTA.

To illustrate the execution of the ILRTA∗ under the
GOTA conditions, let us consider the following example.

Let X = {x1, x2, x3, x4} be a sample space with the lo-
cation probabilities p (x1) = 0.1, p (x2) = 0.2, p (x3) = 0.3,
and p (x4) = 0.4. The partition space χ of the sample space
X consists of the following partitions:

α0 = {{x1, x2, x3, x4}, ∅},
α1 = {{x1}, {x2, x3, x4}}, α2 = {{x2}, {x1, x3, x4}},
α3 = {{x3}, {x1, x2, x4}}, α4 = {{x4}, {x1, x2, x3}},
α5 = {{x1, x2}, {x3, x4}}, α6 = {{x1, x3}, {x2, x4}},
α7 = {{x1, x4}, {x2, x3}}, α8 = {{x1}, {x2, x3}, {x4}},
α9 = {{x1}, {x2}, {x3, x4}}, α10 = {{x1}, {x3}, {x2, x4}},
α11 = {{x2}, {x1, x3}, {x4}}, α12 = {{x2}, {x1, x4}, {x3}}
α13 = {{x3}, {x1, x2}, {x4}}, α14 = {{x1}, {x2}, {x3}, {x4}}.

Suppose that the cost function g is conventionally defined
as g(α, β) = ∑

A∈(β\α) p(A). The matrix of the Rokhlin dis-
tances with costs g(α, β) is shown in Fig. 4.

The corresponding graph that represents partition space
χ is shown in Fig. 5.

Following Figs. 4 and 5, a minimum non-zero Rokhlin
distance d, as weighted by the GOTA cost between the ini-
tial partition θ = α0 and the partitions αi , i = 1, . . . , 7, is
reached for partition α1, which is chosen by the ILRTA∗
algorithm. The minimum non-zero distance between the
obtained partition α1 and partitions αi , i = 8, . . . , 13, is
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Fig. 4. Matrix of the Rokhlin distances weighted by costs for the ILRTA∗ algorithm acting under GOTA requirements.

then reached for partition α9. Following this selection, the
single remaining partition that is chosen is the final parti-
tion γ = α14.

The above procedures and the obtained results show
that under defined conditions the ILRTA∗ algorithm
acts as known (offline optimal and online near-optimal)
information-theoretic search procedures. In fact, it follows
that the ILRTA∗ algorithm can be considered as a general-
ization of these known search algorithms, and it is reduced
to these algorithms by suitable definitions of the neighbor-
hood. To the best of our knowledge, such an observation
has not been previously published.

5. Simulation studies using the ILRTA∗ algorithm

This section presents numerical simulations using the
ILRTA∗ algorithm. In most of the reported simulations the
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Fig. 5. Graph of partitions with a GOTA neighborhood for the
ILRTA∗.

Rokhlin metric was used as a measure of the distance be-
tween partitions; however, in one case the Ornstein distance
was used as the distance estimation to represent a situation
with side information. Roughly speaking, the Ornstein dis-
tance measures the difference between two partitions such
that it provides a probability that these partitions are dif-
ferent. Using the Ornstein distance as a distance estima-
tor between the candidate partition and the final partition
provides a probability measure that the search process will
terminate in the next step.

Based on practical considerations, we assumed that at
the beginning of the search a simple offline search proce-
dure can be used, such as the Huffman search. The offline
procedure results in a fast “zoom-in” process to a smaller
search subspace, where the target can be located. Then, in
the vicinity of the target the online ILRTA∗ procedure can
be used to account for new side information. The use of
an offline procedure is particularly appealing when a priori
information on the target’s location is updated gradually
at an increasing rate: the information is relatively fixed at
the beginning of the search, relatively far from the target;
therefore an offline procedure is feasible, while most of the
information updates are revealed as the searcher reaches the
target’s neighborhood, thus requiring the application of an
online procedure. The justification for such an assumption
can be found in many practical examples. For example, in
software testing the exact location of a bug is refined once
the faulty module has been identified. Similarly, in quality
inspection of wafers, the information on the exact location
of the contaminated spots is evident once the visual inspec-
tion equipment is focused on the contaminated area. The
same principle applies to the location of a nonconforming
unit in a batch (Herer and Raz, 2000), a search for a mobile
device in a cellular network (Krishnamachari et al., 2004),
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176 Kagan and Ben-Gal

Table 1. Simulation results of the ILRTA∗ algorithm in the vicinity of the target

Number of steps

Distance, estimation, neighborhood Min Max Mean Std. deviation

Rokhlin distance, zero estimation, Huffman neighborhood 1 8 5.575 1.866
Rokhlin distance, zero estimation, GOTA neighborhood 2 8 6.025 1.609
Rokhlin distance, zero estimation, general neighborhood 1 25 6.020 3.700
Rokhlin distance, Ornstein estimation, general neighborhood 1 14 2.790 1.864

and the identification of a bad segment in a communication
network (Brice and Jiang, 2009). In all of these examples,
most of the information updates are revealed as being at
the target’s neighborhood.

The use of an offline procedure at the beginning of the
search is very appealing, since most of the offline group
testing procedures (including the proposed ILRTA∗ with
a Huffman neighborhood, as discussed in Section 4) can
apply the entropy lower bound for the expected number of
tests. This bound, in the worst case, is close to the entropy
of the location probability plus one (Cover and Thomas,
1991; Ben-Gal, 2004). This fact implies that when the search
space contains, for example, 10 000 points, it will require up
to �log2 10 000� = 14 binary group tests or �logq 10 000� q-
ary group tests to reach the vicinity of the target. Taking
these observations into account, in the simulated study we
focused on the last stage of the search near the target, while
ignoring the relatively fixed (and optimal) number of test
rounds till this area is reached.

In the simulations we used a sample space X of 10 000
points. When comparing the different search algorithms
we ignore the first fixed number of group tests that are re-
quired to reach the subset of nine points in the vicinity of
the target. Each simulation contained 1000 replications of
the search algorithm. The target’s location was uniformly
distributed over the sample space during the simulations.
These replications were executed by a suitable C++ pro-
gram. The pseudo-code of the main function of the simula-
tion procedure is given at the end of the Appendix. In this
implementation of the ILRTA∗ we build and store all parti-
tions before the search, whereas in the recursive algorithm
(Ben-Gal et al., 2007, Ben-Gal et al., 2008) the partitions
are built consecutively during the search. Accordingly, at
each step this implementation required polynomial time to
build the partition and to select the searcher’s next move.

The simulations executed different search procedures
over the partition space with different types of neighbor-
hood structures and two types of distance estimations. The
different search conditions are represented by the differ-
ent lines in Table 1: (i) a Huffman neighborhood with the
Rokhlin distance and zero-distance estimations (i.e., sim-
ilar to Huffman with no side information); (ii) a GOTA
neighborhood with the Rokhlin distance and zero-distance
estimations (i.e., similar to GOTA with no side informa-
tion); (iii) a general neighborhood (defined by any possible

refinement of the current partition) with a Rokhlin dis-
tance and zero-distance estimations (i.e., a general search
with no side information); and (iv) a general neighbor-
hood with the Rokhlin distance and the Ornstein distance
estimations (i.e., general search with side information). In
addition, for comparison purposes, a search by the ILRTA∗
algorithm versus the popular maximum entropy criterion,
which results in a selection of the partition that obtains the
maximal conditional entropy given the current partition,
was also performed in line (v) in Table 1. Thus lines (i), (ii),
and (v) in Table 1 can be considered as known methods that
can be generalized by the ILRTA∗ algorithm. The results
of the simulations are presented in Table 1.

We first analyzed the results for the cases that are not
based on any side information (represented by the “zero
estimation” cases). The histograms of the number of search
steps for such cases are shown in Fig. 6.

A comparison of the simulation results was performed by
using Welch’s t statistic with a significance level parameter
of 0.05. Since the number of degrees of freedom for all
tests was greater than 120, the statistic’s critical value is
approximately tstat = 1.960. Results of the comparisons are
presented in Table 2.

Note that the results obtained for the search using a
Huffman neighborhood are statistically different from
those obtained for searches using all the other neighbor-
hood structures. This result confirms the known fact on
the optimality of the Huffman procedure for a search after
a static target when a priori information is fixed.

The next comparison was carried out between the on-
line ILRTA∗ and the offline, computationally expensive
Markov Decision Process (MDP) search process (White,
1993). The MDP procedure and its variants rely on an ex-
pectation regarding the target’s locations at the next time
steps, which determined the searcher’s selections (Kagan
and Ben-Gal, 2007).

We compared the ILRTA∗ algorithms using a Huffman
neighborhood, a Rokhlin distance, and a zero estimation
(with a mean of 5.575 and a standard deviation of 1.866)
with an MDP model, which is based on the maximum
probability criterion (with a mean of 4.928 and a standard
deviation of 2.547). The histograms for these two search
methods are shown in Fig. 7.

The observed value of the t-statistic in this comparison
is tobserved = 6.481, and the statistical value is tstat = 1.960.
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Informational learning and group testing 177

Fig. 6. Histograms for the number of search steps without distance estimations.

Thus, a Welch’s t-test with a significance level of 0.05 shows
that, in terms of a minimal expected number of search
steps, the MDP search with an expectation is significantly
better than the ILRTA∗ search. This result highlights that
when the computational budget (and time) enables massive
dynamic-programming type of computations, and when an
expectation on the target location is available, the MDP ap-
proach outperforms the ILRTA∗. This conclusion changes,

as seen below, when side information is introduced during
the search.

Finally, we compared the ILRTA∗ algorithm with
non-zero distance estimations against the MDP model. In
particular, we compared the search using the ILRTA∗ algo-
rithm against the Rokhlin distance, an Ornstein estimation,
and a general unrestricted neighborhood (with a mean of
2.790 and a standard deviation of 1.864) versus the MDP

Table 2. Statistical differences between the actions of the ILRTA∗ algorithm with different neighborhoods and estimations

Rokhlin distance, zero estimation Maximum entropy
Rokhlin distance, criterion, general
zero estimation GOTA neighborhood General neighborhood neighborhood

Huffman neighborhood Significant, tobserved = 5.776 Significant, tobserved = 3.396 Significant, tobserved = 7.111
GOTA neighborhood — Insignificant, tobserved = 0.039 Insignificant, tobserved = 1.207
General neighborhood — — Insignificant, tobserved = 0.699
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178 Kagan and Ben-Gal

Fig. 7. Histograms for the number of search steps for the ILRTA∗ algorithm and the MDP model.

search with a maximum expected information criterion and
multi-point subsets (with a mean of 4.459 and a standard
deviation of 1.205). The histograms of the search steps for
these two procedures are shown in Fig. 8.

The Welch’s t-test indicates that the expected number of
search steps obtained by the ILRTA∗ algorithm with side
information is significantly smaller than the expected num-
ber of search steps obtained by the MDP model. The value
of the t-statistic in this case is tobserved = 23.777, and for a
significance level of 0.05 (with 1709 degrees of freedom) it
is tstat = 1.960.

The results of the simulations show that the group
testing/search process depends significantly on the type
of neighborhood, the stability of the available informa-
tion, and the distance estimations used. The best results in
the case of zero distance estimations are obtained for the
Huffman neighborhood. An implementation of Ornstein

distance estimations results in a significantly smaller num-
ber of search steps with respect to all the simulated
cases, also for the cases with an unrestricted general
neighborhood.

6. Discussion and summary

This article considers the problem of group testing/search
for a static target over a discrete sample space; e.g,. for
locating a nonconforming unit in a batch of units. The
action available to the searcher is to check a subset of units
and determine whether the target is included in this subset
or not. The procedure terminates if the searcher finds the
target in a subset that contains only one unit. The goal is to
find a search procedure that terminates in a minimal average
number of steps. For this purpose, the ILRTA∗ algorithm is

Fig. 8. Histograms for the number of search steps for the ILRTA∗ algorithm and MDP model for a search with expectations.
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Informational learning and group testing 179

proposed as a solution approach of online group testing or
sequential experimentation. The online search algorithm is
based on an SLS framework. In contrast with known search
methods, it allows taking into account side information
that might be available at the neighborhood of the target.
Examples for such side information exist in quality tests of
wafers, printed circuit boards, software modules, chemical
batches, and more.

The suggested ILRTA∗ algorithm, in contrast with other
search methods, performs over the set of partitions of the
sample space. It utilizes the Rokhlin metric and the Orn-
stein metric as distance measures among alternative par-
titions. However, in general, other distance measures that
comply with the metric requirements can be used within the
suggested framework. The required properties of the met-
rics are developed, and their dependence on the location
probabilities and the space topology are studied.

It is shown that the suggested ILRTA∗ algorithm al-
ways converges and terminates. Moreover, the ILRTA∗ is
compared against the known optimal Huffman search al-
gorithm and the near-optimal GOTA. It is proven the-
oretically and demonstrated by numerical examples that
under the conditions of the Huffman search the for-
mulated ILRTA∗ algorithm results in the same optimal
solutions, and under the conditions of GOTA, it results
in near-optimal solutions that are equivalent to those ob-
tained by the GOTA. In contrast with these known algo-
rithms, the online ILRTA∗ algorithm can take into account
side information regarding the target location that is advan-
tageous in situations where new information is obtained
during the search.

Features of the suggested algorithm are analyzed theoret-
ically and studied by numerical simulations. Statistical anal-
ysis of simulated results shows that the suggested ILRTA∗
search algorithm outperforms known search procedures in
various settings. Results of comparisons between the sug-
gested ILRTA∗ against other known search procedures are
summarized in Table 3. The table presents various search
procedures that are applicable under various settings. Bold
fonts mark those algorithms that provide the best results in
terms of a minimal average number of search steps.

As it follows from Table 2, the proposed ILRTA∗ algo-
rithm outperforms other known models in most cases, and
in the presence of side information the ILRTA∗ algorithm
achieves much superior results than the other considered
algorithms.

Besides the trivial application of finding a nonconform-
ing unit, the suggested algorithm can be applied to a num-
ber of practical problems, including, for example, classi-
fication of data sequences (Ben-Gal et al., 2007; Ben-Gal
et al., 2008), where it leads to effective solutions. Finally,
the ILRTA∗ algorithm can be generalized for a search after
a moving target (Kagan and Been-Gal, 2006)—a problem
that is equivalent to a search problem over a sample space
with changing probability distributions or to a search by
multiple searchers for multiple targets. These two gener-

Table 3. Comparative study of the ILRTA∗ algorithm against
other search algorithms

Presence of side
information

Absence of side
information

Group tests
with single-
point sets On-line search:

Probabilistic MDP
Informational MDP
ILRTA∗ algorithm1

With off-line stages:
Ross’s MDP2

On-line search:
Probabilistic MDP
Informational MDP
ILRTA∗ algorithm3

Group tests
with multi-
points sets On-line search:

Informational MDP;
ILRTA∗ algorithm4

With off-line stages:
Huffman5

On-line search:
GOTA
Informational MDP 6

ILRTA∗ algorithm7

1Requires non-zero distance estimations. The superiority of the ILRTA∗

algorithm is shown by numerical simulations.
2Requires offline dynamic programming solution. Optimality versus costs
of search is proven analytically.
3Requires non-zero distance estimations. The superiority of the ILRTA∗

algorithm is shown by numerical simulations.
4The superiority of the ILRTA∗ algorithm is proven analytically and con-
firmed by numerical simulations.
5Requires offline creation of the search tree. The optimality is proven
analytically.
6The informational MDP search and the GOTA search result in statisti-
cally equivalent numbers of search steps.
7The ILRTA∗ algorithm and by the Huffman procedure generate an
equivalent search trees.

alizations are further considered in related papers (Kagan
and Ben-Gal, 2006, 2010).
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Appendix

Below we present the proofs of the theorems and lemmas
that were formulated in the main text.

Proof of Lemma 1. Using the definition of the conditional
entropy (2) and the formulas of relative probabilities, we
obtain that

d(α, β) = −
k∑

i=1

k∑
j=1

p(Ai ∩ Bj )

×
(

log
p(Ai ∩ Bj )

p(Ai )
+ log

p(Ai ∩ Bj )
p(Bj )

)
.

Since the probabilistic measure is additive, we also have

dOrn (α, β) = 1 −
k∑

i=1

p (Ai ∩ Bi ).

Thus, we need to prove the correctness of the following
inequality:

R =
k∑

i=1

(
p(Ai ∩ Bi ) +

k∑
j=1

p(Ai ∩ Bj )

× log
p(Ai )p(Bj )

[p(Ai ∩ Bj )]2

)
≥ 1.

If α = β, then:

k∑
i=1

k∑
j=1

p
(

Ai ∩ Bj
)

log
p(Ai )p(Bj )

[p(Ai ∩ Bj )]2
= 0,

and R =
k∑

i=1

p (Ai ∩ Bi ) = 1.

Let α �= β, and suppose that the partitions α =
{A1, . . . , Ak−1, Ak} and β = {B1, . . . , Bk−1, Bk} are such
that Ai = Bi , i = 1, 2, . . . , k − 2, and Ak−1 �= Bk−1 and
Ak �= Bk.

Let α′ = {A′
1, . . . , A′

k−1, A′
k} and β ′ = {B′

1, . . . , B′
k−1, B′

k}
be such partitions that A′

i = Ai , B′
i = Bi ; i = 1, 2, . . . , k −

2; A′
k−1 = B′

k−1, A′
k = B′

k; p(A′
k−1) + p(A′

k) = p(Ak−1) +
p(Ak); and p(B′

k−1) + p(B′
k) = p(Bk−1) + p(Bk). Denote

the left side of the inequality for the partitions α′ = β ′ by R′.
Indeed, R′ = 1. Since α′ = β ′, we have p(A′

k−1) + p(A′
k) =
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Informational learning and group testing 181

p(B′
k−1) + p(B′

k). Hence, p(Ak−1) + p(Ak) = p(Bk−1) +
p(Bk), and so Ak−1 ⊂ Bk−1 and Bk ⊂ Ak or Bk−1 ⊂ Ak−1
and Ak ⊂ Bk.

Let for certainty Ak−1 ⊂ Bk−1 and Bk ⊂ Ak. Consider the
last addendums of R′ and R. According to the assumptions
for α′ and β ′, R′ = m′ + r ′ and R = m + r . Thus, we obtain

r ′ = p(A′
k−1) + p(A′

k) = p(A′
k−1) + p(B′

k),

r = p(Ak−1) + p(Ak−1) log
p(Bk−1)
p(Ak−1)

+ p(Bk)

+ p(Bk) log
p(Ak)
p(Bk)

.

Since Ak−1 ⊂ Bk−1 and Bk ⊂ Ak, it holds true
that p(Ak−1) < p(Bk−1) and p(Ak) < p(Bk). Thus,
log(p(Bk−1)/p(Ak−1)) > 0 and log(p(Ak)/p(Bk)) > 0.

Now taking into account that (according to definition of
the partitions α′ and β ′) m′ = m, we obtain r ′ < r , and so
R′ < R.

The use of the same reasoning to the remaining cases with
A′

i = B′
i , i = (k − 2), (k − 1), k and so on for i = 1, 2, . . . , k

is similar. Thus, if α = β then R = 1, and if α �= β then
R > 1. �

Proof of Lemma 2. The proof of the lemma is based
on the following three claims that are to be proven
first. Let θ = {X, ∅} be a trivial partition and let γ =
{{x1}, {x2}, . . . , {xn}}, xi ∈ X, i = 1, . . . , n, be a discrete
partition.

Claim 1. d(θ, γ ) = max(α,β)∈χ×χ d(α, β).

Proof. Assume that there exist two partitions α, β ∈ χ such
that d(α, β) > d(θ, γ ); that is,

H(α | β) + H(β | α) > H(θ | γ ) + H(γ | θ).

Note that H(θ) = 0, and since θ ≺ γ , it implies that
H(θ | γ ) = 0. Moreover, partitions γ and ξ ∈ χ satisfy
H(γ | ξ ) = H(γ ) − H(ξ ) and, in particular, H(γ | θ ) =
H(γ ). Thus, H(α | β) + H(β | α) > H(γ ) − H(θ) = H(γ )
and H(α | β) + H(β | α) > H(γ | β) + H(β). Hence,

H(α | β) − H(γ | β) > H(β) − H(β | α).

However, H(β) ≥ H(β | α), and since β ≺ γ we ob-
tain H(γ | β) ≥ H(α | β). Thus, H(α | β) − H(γ | β) ≤ 0
and H(β) − H(β | α) ≥ 0, which contradict to the initial
assumption. �

Now we consider the Rokhlin metric for the above-
mentioned probability mass functions u and p. Let du(α, β)
denote the Rokhlin metric for the uniform (equi-probable)
distribution of the target’s locations and dp(α, β) denote the
Rokhlin metric for some arbitrary probability mass func-
tion with finite variance.

Claim 2. For every partition α ∈ χ it applies that dp(α, α) =
du(α, α) = 0 and that dp(θ, γ ) ≤ du(θ, γ ).

Proof. For every p one obtains

dp(θ, γ ) = Hp(θ | γ ) + Hp(γ | θ) = Hp(γ | θ ) = Hp(γ )

and it is known (Cover and Thomas, 1991) that Hp(γ ) ≤
Hu(γ ).

Let α, β ∈ (χ, ≺). If d(θ, α) = d(θ, β) then d(α, β) = 0.
In fact, since it is a metric, if α = β then d(α, β) = 0, re-
gardless of p.

Let α �= β and assume without loss of generality that α ≺
β. By definition, d(θ, α) = H(α | θ) + H(θ | α) = H(α),
d(θ, β) = H(β | θ) + H(θ | β) = H(β), and d(α, β) =
H(α | β) + H(β | α).

Since α ≺ β, one obtains H(α | β) = 0 and H(β | α) =
H(β) − H(α), which results in d(α, β) = 0, regardless of p.

Similarly, d(α, γ ) = H(γ ) − H(α), d(α, γ ) = H(γ ) −
H(β), so if d(α, γ ) = d(β, γ ), then d(α, β) = 0. �

Claim 3. If (χ, ≺) is ordered, then metric d is non-decreasing
in (χ, ≺); moreover, d is concave in (χ, ≺).

Proof. Let α, β, ξ ∈ (χ, ≺) and α ≺ ξ ≺ β. Since H(α) ≤
H(ξ ) ≤ H(β) it implies that

d(θ, α) ≤ d(θ, ξ ) ≤ d(θ, β).

Thus, metric d is non-decreasing in (χ, ≺).
The concavity of d for the linear structure (χ, ≺) fol-

lows from concavity of the entropy (Cover and Thomas,
1991). �

Proof of the Lemma. Under the condition of the lemma
for every α ∈ (χ, ≺), we have

dp(θ, α) < du(θ, α).

In fact, if dp(θ, α) > du(θ, α), then, since d is concave and
dp(α, β) ≤ dp(θ, γ ), there exists such a partition ξ ∈ (χ, ≺)
that dp(θ, ξ ) = du(θ, ξ ), which is impossible since Hp(α) �=
Hu(α).

Let α, β ∈ (χ, ≺) and let α ≺ β, without loss of gen-
erality. Both dp(α, α) and du(α, α) = 0 and, under the
lemma’s requirement, dp(θ, γ ) < du(θ, γ ), distance du in-
creases faster than distance dp. Hence,

dp(θ, β) − dp(θ, α) < du(θ, β) − du(θ, α).

Now recall that if α ≺ β then d(α, β) = H(β) − H(α)
and that d(θ, β) = H(β), d(θ, α) = H(α); thus, we obtain
the required inequality. �

Proof of Lemma 3. Consider the triangle (α, β, γ ) with the
corresponding partitions in its vertices.

Let αcur = α, and suppose that the algorithm, in contrast
to the statement of the lemma, selects partition β. That is,

d(α, β) + d̃(β, γ ) ≤ d(α, γ ) + d̃(γ, γ ) = d(α, γ ).
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182 Kagan and Ben-Gal

Since γ ∈ N(β), it follows that d̃(β, γ ) = d(β, γ ). Thus,
d(α, β) + d(β, γ ) ≤ d(α, γ ). But, according to the triangle
inequality, d(α, β) + d(β, γ ) ≥ d(α, γ ).

Hence, the only possible selection of β is if β = γ . �
Proof of Lemma 4. Consider the case of choosing partition
β. For the chosen partition β, and according to the triangle
inequality and admissibility assumption (8), it follows that

d̃(α, γ ) ≤ d(α, β) + d̃(β, γ ).

Thus, in step 3b of the ILRTA∗ algorithm the estimation
updating is given by

d̃(α, γ ) ← d(α, β) + d̃(β, γ ).

Let ω ∈ N(β) and suppose that the next partition chosen
after β is α ∈ N(β). Thus,

2d(α, β) + d̃(β, γ ) + d̃(α, γ ) ≤ d(β, ω) + d̃(ω, γ ).

Taking into account that if α ∈ N(β) and ω ∈ N(β) then
d(α, β) = d̃(α, β) and d(β, ω) = d̃(β, ω), leading to

2d̃(α, β) + d̃(β, γ ) + d̃(α, γ ) ≤ d̃(β, ω) + d̃(ω, γ ).

Finally, recalling that the distance estimation d̃ meets the
requirements of a metric we obtain

2d̃(α, β) + d̃(β, γ ) + d̃(α, γ ) ≤ d̃(β, γ ).

Accordingly, 2d̃(α, β) + d̃(α, γ ) = 0 implies that both
α = β and α = γ , which is impossible. Therefore, the cho-
sen partition has to be ω and the algorithm does not return
to α in the next step. �
Proof of Theorem 3. The existence of at least one path
from αcur to the final partition γ implies that for some α,
γ ∈ N(α). If αcur = α, then according to Lemma 3, the final
partition γ is selected and the algorithm terminates.

Let αcur = β �= α and γ /∈ N(β). Then, according to
Lemma 4, the search algorithm does not return to the
previous partition and chooses a partition from the neigh-
borhood N(β). If α ∈ N(β) is a single partition, then this
partition will be chosen. Otherwise, assume that there exists
a partition ω ∈ N(β), ω �= α. Thus, according to Lemma 4,
the algorithm chooses a partition ω. If γ ∈ N(ω), then,
according to Lemma 3, the algorithm chooses the final
partition γ and terminates. If γ /∈ N(ω), then the same rea-
soning is applied to partition αcur = ω.

Let α /∈ N(β). If αcur ∈ N(β) is a single partition in the
neighborhood of β, then the next partition after β is αcur.
According to Lemma 4, the algorithm continues without
returning to β and selects another partition from N(αcur).

Following backward induction, by applying a similar
consideration to the partitions one step before the current
selection, then two steps before the selection, and so on up
to the initial partition θ , one obtains the statement of the
theorem. �
Proof of Lemma 5. If

d̃(αcur, γ ) ≥ minα∈N(αcur){d(αcur, α) + d̃(α, γ )},

then the estimation updating is given by

d̃(αcur, γ ) ← d̃(αcur, γ ),

and the proposition follows directly from the inequality
d̃(α, γ ) ≤ d(α, γ ).

Let d̃(αcur, γ ) < minα∈N(αcur){d(αcur, α) + d̃(α, γ )} and
denote αmin = arg minα∈N(αcur){d(αcur, α) + d̃(α, γ )}. We
need to show that

d(αcur, αmin) + d̃(αmin, γ ) ≤ d(αcur, γ ).

Suppose, on the other hand, that

d(αcur, αmin) + d̃(αmin, γ ) > d(αcur, γ ).

Then, using the triangle inequality we obtain that

d(αcur, γ ) < d(αcur, αmin) + d̃(αmin, γ ),
d(αcur, γ ) ≤ d(αcur, αmin) + d(αmin, γ ).

Since αmin is such a partition that supplies a minimal
distance estimation, the segment (αcur, αmin) is in the path
that gives the exact distance value d(αcur, γ ). Therefore,

d(αcur, γ ) = d(αcur, αmin) + d(αmin, γ ),

and d̃(αmin, γ ) > d(αmin, γ ), in contradiction to the as-
sumption that d̃(α, γ ) ≤ d(α, γ ) for every α ∈ χ . �

Proof of Theorem 4. The statement of the theorem is an
immediate consequence from Lemma 4, Lemma 5, and
Theorem 3. In fact, let d̃

i
0 (α, γ ), α ∈ χ , be an initial distance

estimation in the ith trial. Then, if for the partitions α ∈ χ ,
which are included in the path on the ith trial, it follows
that

d̃
i
0 (α, γ ) < d̃

i
(α, γ ) ≤ d (α, γ ) ,

then for the (i + 1)th trial, these partitions have initial
estimations:

d̃
i+1
0 (α, γ ) = d̃

i+1
(α, γ ) ≤ d (α, γ ) .

Thus, for each path chosen on the next trial n we obtain

d̃
i+n
0 (α, γ ) → d(α, γ ) with n → ∞,

for all partitions α ∈ χ that are included in the path chosen
in the nth trial.

Since the number of paths is finite and the distance es-
timations are strictly increasing with the trials, they will
converge to their upper bound, which is provided by real
distances according to admissibility requirement (8). Thus,
after a finite number of trials, all distance estimations will
be equal to the real distances, and the obtained path will
follow such distances, as it is required. �

Proof of Lemma 6. Let αcur = {A1, A2, . . . , Am}. Denote
pi = p(Ai ), i = 1, 2, . . . , m, and suppose that p1 ≤ p2 ≤
. . . ≤ pm. It is clear that such ordering always exists and
does not change the form of the Huffman tree.
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Informational learning and group testing 183

Then, according to the Huffman procedure, the next
partition αnext = {A′ = A1 ∪ A2, A3, . . . , Am} with p′ =
p1 + p2, and we should prove that

αnext = {A1 ∪ A2, A3, . . . , Am} = arg maxα∈NHuf (αcur)

× {H(αl | αcur) − H(αl | α)}.
Since αcur ≺ αl and αnext ≺ αl , for the conditional en-

tropies H(αl | αcur) and H(αl | αnext) according to Theo-
rem 2 it holds true that H(αl | αcur) = H(αl ) − H(αcur), and
H(αl | αnext) = H(αl ) − H(αnext).

Thus, we need to show that

H(p1 + p2, p3, . . . , pm) ≥ H(p1 + pi , p2, . . . , pi−1,

pi+1, . . . , pm).

If m = 2, then the inequality is an obvious equality:

H(p1 + p2, 0) = H(p1 + p2, 0).

Let m > 2. Using the full form of the entropy, we obtain

−(p1 + p2) log(p1 + p2) −
m∑

j=3

p j log p j

≥ −(p1 + pi ) log(p1 + pi ) −
m∑

j=2
j �=i

p j log p j ,

and, finally,

(p1 + p2) log(p1 + p2) + pi log pi

≤ (p1 + pi ) log(p1 + pi ) + p2 log p2.

Recall that 0 < p1 ≤ p2 ≤ pi and p1 + p2 + pi ≤ 1. Let
us fix the probabilities p1 and pi , and consider the function:

f (p2) = (p1 + p2) log(p1 + p2) + pi log pi

− (p1 + pi ) log(p1 + pi ) − p2 log p2.

We need to show that f (p2) ≤ 0 for p1 ≤ p2 ≤ pi . The
first derivation (d/d p2) f of the function f is

(d/d p2) f = log(p1 + p2) − log p2 = log(p1 + p2/p2),

and the second derivation (d2/d(p2)2) f of the function f is

(d2/d(p2)2) f = (1/ln 2)(1/(p1 + p2) − 1/p1).

Since 0 < p1 ≤ p2 ≤ pi , the first derivation (d/d p2) f is
non-negative and the second derivation (d2/d(p2)2) f is
negative. Hence, the function f increases with p2 up to
the value

f (pi ) = (p1 + pi ) log(p1 + pi ) + pi log pi

− (p1 + pi ) log(p1 + pi ) − pi log pi = 0,

which is a maximum of the function f for 0 < p1 ≤ p2 ≤ pi .
Thus, given the current partition αcur = {A1, A2, . . . ,

Am} such that p(A1) ≤ p(A2) ≤ . . . ≤ p(Am), the

maximal value of the difference H(αl | αnext) −
H(αl | αcur) is reached for the next partition
αnext = {A′ = A1 ∪ A2, . . . , Am}. �
Proof of Theorem 5. Consider the Huffman procedure.
Note that as a bottom-up procedure, the Huffman pro-
cedure starts from the partition θ = αl , and according to
Lemma 6, the selection criterion is based on the difference

H(θ | αcur) − H(θ | α), α ≺ αcur ≺ θ, α ∈ χ.

Hence, for the chosen partitions αl−i−1 ≺ αl , i =
0, 1, . . . , l − 1, by the Huffman procedure, it is true that
θ = αl � αl−1 � . . . � α1 � α0 = γ .

Based on Theorem 2, for every partition α ∈ χ we get

H(θ | αcur) − H(θ | α) = H(θ) − H(αcur) − H(θ) + H(α)
= H(α) − H(αcur).

Thus, given the initial partition θ , and the selection
criterion:

αnext ← arg maxα∈NHuf (αcur){H(θ | αcur) − H(θ | α)},
in step 2a of the Huffman procedure, we obtain

αnext ← arg maxα∈NHuf (αcur) {H (α) − H (αcur)},
which is equivalent to the selection criterion

αnext ← arg minα∈NHuf (αcur) {H (αcur) − H (α)}.
Now, consider the action choice in the ILTRA∗

algorithm:

αnext ← arg minα∈N(αcur)

{
d (αcur, α) + d̃ (α, γ )

}
.

Under the assumptions of the theorem, and taking into
account the Huffman neighborhood, we get

αnext ← arg minα∈NHuf (αcur) {H (α | αcur) + H (αcur | α)}
with H (α | αcur) = 0 and H (αcur | α) = H (αcur) − H (α).
Hence,

αnext ← arg minα∈NHu f (αcur) {H (αcur) − H (α)},
which is equivalent to the selection criterion in the Huffman
procedure.

Consider the estimation update in the ILRTA∗ algo-
rithm. According to Lemma 4, the goal of the estimation
update is to avoid a return of the algorithm to the previous
partition in the same trial. This is equivalent to a deletion
of this partition from the set of all available partitions—a
rule that is executed by step 2b in the Huffman procedure.

Finally, we need to show that the termination rule
d(αcur, γ ) = 0, which is used in the ILRTA∗ algorithm,
is equivalent to the termination rule H(αcur | α0) = 0 of the
Huffman procedure. In fact, for the Huffman procedure we
have

d (α0, αcur) = H (α0 | αcur) + H (αcur | α0) .

Since α0 ≺ αcur, according to Theorem 1 it follows that
H(α0 | αcur) = 0. Hence, d(α0, αcur) = H(αcur | α0), result-
ing in the same termination rule. �
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184 Kagan and Ben-Gal

Proof of Theorem 7. At first, let us demonstrate the equiv-
alence of the action choice. Under the assumptions of the
theorem, since α � αcur we obtain

d (αcur, α) = H (αcur | α) + H (α | αcur) = H(α) − H(αcur),

and the action choice of the ILTRA∗ algorithm is

αnext ← arg minα∈N(αcur){H(α) − H(αcur)}.
Under the assumptions on the cost function g it follows
that

H(γ | αcur) − H(γ | α)
g(αcur, α)

= H(α) − H(αcur)
g(αcur, α)

= H(αcur) − H(α)
g(α, αcur)

.

Accordingly, the selection by the GOTA can be expressed
as follows:

αnext ← arg maxα∈NG(αcur)

{
1

g (α, αcur)
(H (αcur) − H (α))

}
,

which is equivalent to the selection by the ILRTA∗ algo-
rithm with a proper neighborhood definition:

αnext ← arg minα∈NG(αcur)

{
1

g (αcur, α)
(H (α) − H (αcur))

}
.

Now let us consider the termination rule. For the ILRTA∗
algorithm:

d(αcur, γ ) = H(αcur | γ ) + H(γ | αcur).

If αcur = γ , then both H(αcur | γ ) = 0 and H(γ | αcur) =
0, and the equivalence of the GOTA’s termination rule to
the termination rule of the ILRTA∗ algorithm is satisfied.

Let αcur �= γ . While αcur ≺ γ , it follows that
H(γ | αcur) > 0, and when αcur � γ , then H(γ | αcur) =
0. Thus, the GOTA’s termination rule H(γ | αcur) = 0 is
correct.

The reasons for the estimation update are similar to the
ones used in the proof of Theorem 5, which addresses the
Huffman procedure. �
PSEUDO-CODE: MAIN FUNCTION OF THE ILRTA∗
SIMULATIONS

(1) Create: sample space X and partitions
space χ.

(2) For sessions number = 0 to 1000 do

a. Init sample space X by location
probabilities.

b. If required for comparison, create
a Maximum-entropy search tree or a
Huffman search tree.

c. Init target’s location and create
corresponding TargetPartition.

d. Do
CurrentSearcherPartition ←
Searcher.step()

While
CurrentSearcherPartition �=
TargetPartition

(3) Delete sample space X and partitions
space χ.
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