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Most statistical process control (SPC) methods are not suitable for monitoring nonlinear and state-
dependent processes. This article introduces the context-based SPC (CSPC) methodology for state-
dependent data generated by a finite-memory source. The key idea of the CSPC is to monitor the statistical
attributes of a process by comparing two context trees at any monitoring period of time. The first is a ref-
erence tree that represents the “in control” reference behavior of the process; the second is a monitored
tree, generated periodically from a sample of sequenced observations, that represents the behavior of the
process at that period. The Kullback–Leibler (KL) statistic is used to measure the relative “distance” be-
tween these two trees, and an analytic distribution of this statistic is derived. Monitoring the KL statistic
indicates whether there has been any significant change in the process that requires intervention. An ex-
ample of buffer-level monitoring in a production system demonstrates the viability of the new method
with respect to conventional methods.
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1. INTRODUCTION

1.1 Statistical Process Control Methods:
Overview and Taxonomy

Since the introduction of statistical process control (SPC)—
the Shewhart chart—extensive research has been performed to
adapt it to various industrial settings. Early SPC methods were
based on two critical assumptions: (1) there exists an a priori
knowledge of the underlying distribution (often, observations
are assumed to be normally distributed), and (2) the observa-
tions are independent and identically distributed (iid). In prac-
tice, these assumptions are frequently violated in various indus-
trial processes. In this article we present a novel SPC method
that is not based on those assumptions.

An extensive literature review leads us to categorize current
SPC methods by two major criteria:

1. Methods for independent data, where observations are not
interrelated versus methods for dependent data

2. Methods that are model-specific, requiring a priori as-
sumptions on the process characteristics, usually defined
by an underlying analytical distribution or a closed-form
expression, such as autoregressive integrated moving av-
erage (ARIMA), versus methods that are termed model-
generic, which try to estimate the underlying model with
minimum a priori assumptions.

Figure 1 presents a taxonomy of SPC methods. In the following
paragraphs, we discuss some of the SPC methods presented in
the literature and explore their relationship to the method pre-
sented in this article.

The information-theoretic process control (ITPC) is an inde-
pendent data–based and model-generic SPC method proposed
by Alwan, Ebrahimi, and Soofi (1998). It uses information the-
ory principles, such as maximum entropy, subject to constraints
derived from the process moments. It provides a theoretical jus-
tification for the traditional Gaussian assumption and suggests
a unified control chart, as opposed to traditional SPC, which
requires separate charts for each moment.

Traditional SPC methods, such as Shewhart, cumulative
sum (CUSUM), and exponential weighted moving average
(EWMA), are for independent data and are model-specific. It
is important to note that these methods are implemented ex-
tensively in industry, although the independence assumptions
are frequently violated in practice: automated testing devices
increase the sampling frequency and introduce autocorrelation
into the data. Moreover, implementation of feedback control de-
vices on the shop floor tends to create structured dynamics in
certain system variables (see Boardman and Boardman 1990;
Ben-Gal and Singer 2001). Applying traditional SPC to such
interrelated processes increases the frequency of false alarms
and shortens the “in-control” average run length (ARL), com-
pared with uncorrelated observations.

Most model-specific methods for dependent data are based
on time series. The underlying principle of these methods is as
follows: Find a time series model that can best capture the auto-
correlation process, use that model to filter the data, then apply
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Figure 1. Taxonomy of SPC Methods.

traditional SPC schemes to the stream of residuals. In particu-
lar, the ARIMA family of models is widely applied for the es-
timation and filtering of process autocorrelation. Under certain
assumptions, the residuals of the ARIMA model are indepen-
dent and approximately normally distributed, and traditional
SPC can be applied. Furthermore, it is commonly conceived
that ARIMA models [mostly the simple ones, such as AR(1)]
can effectively describe a wide variety of industry processes
(see Box and Jenkins 1976; Apley and Shi 1999).

Model-specific methods for autocorrelated data can be fur-
ther partitioned to parameter-dependent methods that require
explicit estimation of the model parameters, and to parameter-
free methods, where the model parameters are only implic-
itly derived, if at all. Several parameter-dependent methods
were proposed over the years for autocorrelated data. Alwan
and Roberts (1988) proposed the special cause chart (SCC), in
which the Shewhart method is applied to the stream of residu-
als. They showed that the SCC has major advantages over She-
whart with respect to mean shifts. The SCC deficiency lies in
the need to explicitly estimate all of the ARIMA parameters.
Moreover, the method performs poorly for a large positive au-
tocorrelation, because the mean shift tends to stabilize rather
quickly to a steady-state value, and thus the shift is poorly man-
ifested on the residuals (see Wardell, Moskowitz, and Plante
1994; Harris and Ross 1991). Runger, Willemain, and Prabhu
(1995) implemented traditional SPC for autocorrelated data us-
ing CUSUM methods. Lu and Reynolds (1997, 1999) extended
the method by using the EWMA method with a small differ-
ence; their model had a random error added to the ARIMA
model. All of these models are based on a priori knowledge

of the data source and require an explicit parameter estima-
tion. Runger and Willemain (1995) demonstrated that for cer-
tain autocorrelated processes, the use of traditional SPC yields
improved performance compared with ARIMA-based methods.
The generalized likelihood ratio test (GLRT) method proposed
by Apley and Shi (1999) takes advantage of the residual tran-
sient dynamics in the ARIMA model when a mean shift is in-
troduced. The generalized likelihood ratio was applied to the
filtered residuals. The method was compared to the Shewhart,
CUSUM, and EWMA methods for autocorrelated data, infer-
ring that the choice of the adequate time series–based SPC
method highly depends on the specific process characteristics.
Moreover, Apley and Shi (1999) and Runger and Willemain
(1995) emphasized that modeling errors of ARIMA parame-
ters have a strong impact on the performance (e.g., the ARL)
of parameter-dependent SPC methods for autocorrelated data.
If the process can accurately be defined by an ARIMA time
series, the parameter-dependent SPC methods are superior in
comparison to nonparameteric methods, because they allow ef-
ficient statistical analyses. When this is not the case, the ef-
fort of estimating the time series parameters is impractical. This
conclusion, among other reasons, triggered the development of
parameter-free methods.

A parameter-free model was proposed by Montgomery and
Mastrangelo (1991) as an approximation procedure based on
EWMA. They suggested using the EWMA statistic as a one-
step-ahead prediction value for the IMA(1,1) model. Their
underlying assumption was that even if the process is bet-
ter described by another member of the ARIMA family, the
IMA(1,1) model is a good enough approximation. Zhang
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(1998), however, compared several SPC methods and demon-
strated that Montgomery’s approximation performed poorly. He
proposed using the EWMA statistic for stationary processes,
but to adjust the process variance according to the autocorre-
lation effects. Runger and Willemain (1995, 1996) discussed
the weighted batch mean (WBM) and the unified batch mean
(UBM) methods. The WBM method assigns weights for the
observations mean and defines the batch size so that the auto-
correlation among batches reduces to 0. In the UBM method,
the batch size is defined (with unified weights) so that the au-
tocorrelation remains under a certain level. Runger and Wille-
main demonstrated that weights estimated from the ARIMA
model do not guarantee a performance improvement and that it
is cost-effective to apply the simple UBM method. In general,
parameter-free methods do not require explicit ARIMA model-
ing. However, they are all based on the implicit assumption that
the time series model is adequate to describe the process. Al-
though this can be true in some industrial environments, such
an approach cannot capture nonlinear process dynamics that
depend on the state in which the system operates, for exam-
ple, processes that are described by hidden Markov models
(HMMs) (Elliott, Lakhdaraggoun, and Moore 1995).

This article presents the context-based SPC (CSPC) method-
ology for state-dependent data. This is a novel SPC method
characterized as model-generic and based on the context
tree that was first proposed by Rissanen (1983) for data-
compression purposes, and later for prediction and identifica-
tion (Weinberger, Rissanen, and Feder 1995). The context tree
provides a compact model of the sequence of observations even
for complex, nonlinear processes, such as HMMs of higher or-
der. The construction algorithm of the context tree generates
the minimal tree that fits a given string of data and estimates its
parameters.

The key idea of the CSPC is to monitor the statistical at-
tributes of a process, by comparing two context trees at any
monitoring period of time. The first of these trees is a reference
tree that represents the “in control” reference behavior of the
process; the second is a monitored tree, generated periodically
from a sample of sequenced observations, that represents the
behavior of the process at that period. The Kullback–Leibler
(KL) statistic (Kullback 1959) is used to measure the relative
“distance” between these two trees, and an analytic distribution
of this statistic is derived. Monitoring the KL statistic indicates
whether there has been any significant change in the process
that requires intervention.

1.2 Motivation and Some Potential Applications

The proposed CSPC has several appealing characteristics.
First, it “learns” the process data dependence and its underlying
distribution without assuming a priori information, and hence
it is model-generic (nonparametric). This is an important ad-
vantage over most traditional SPC schemes, particularly when
monitoring processes whose underlying model is unknown.
Second, the method extends the current limited scope of SPC
applications to nonlinear state-dependent processes. Later we
show that even special SPC methods that were designed to han-
dle correlated data fail to monitor a nonlinear process. Third,
the CSPC allows a convenient monitoring of discrete process

variables. Finally, it uses a single control chart for monitoring
the process. The single chart can be further decomposed if “in-
depth” analysis is required for the source of deviation from con-
trol limits.

The CSPC method may be applied to various processes, as
long as they can be approximated by different arrangements
of symbols and the relationship between the symbols can be
given a statistical expression. However, the method in its cur-
rent form is based on two constraints: (1) it requires a relatively
large amount of data, and (2) it is limited to handle discrete
measures over a finite alphabet. Albeit, there are many areas in
which these limitations do not apply. Three examples of such
potential areas are briefly described.

Image Monitoring. Rissanen (1983), in his original article,
proposed applying the context tree to model two-dimensional
images, where symbol values reflect the pixels’ color (or gray
level). Such an idea can be used in a wide area of applications
related to image monitoring. One of these is automatic screen-
ing for patterns in the textile industry or in the printing industry
to identify features of interest or anomalies. The context tree
can be used to continuously compare images from running fab-
ric or new prints and detect changes that indicate an anomaly in
the coloring system or wear of the print mechanism.

Biological Screening. DNA sequences consist of four bases
(nucleotides)—adenine, cytosine, guanine, and thiamine—
forming a discrete and final alphabet. Provided that groups of
DNA sequences sharing a common functionality or structure
can be identified, they may be used as a training database to
construct context tree models. The context tree–based models
can be applied, using a SPC approach, to identify whether a new
sequence belongs to that group or has a similar feature or struc-
ture that might apply a certain relation to that group. Examples
for DNA sequences that are known to share common statistical
properties are acting regulatory sequences, encoding sequences
for amino acids that construct proteins, intron sequences that
are transcribed but not yet translated, and promoters, which are
defined in general as regions proximal to the transcription-start
site of genes transcribed by RNA polymerase (Ohler and Nie-
mann 2001). For example, Figure 2 presents the score statis-
tics of two Escterichia coli sequences of DNA-spaced reading
frames. The upper series represent promoter sequences, and
the lower series represent nonpromoter sequences. Values of
the score statistics are based on the context tree model. It is
evident that the two populations can be well distinguished by
using the context tree. A straightforward application is thus a
promoter identifier along the genome that is principally similar
to SPC schemes. (Further details on this promising direction of
research are beyond the scope of this article and can be found
in Ben-Gal, Arviv, Shmilovici, and Grosse 2002.)

Production Monitoring via Buffers. A common practice in
the analysis of production systems is to use queueing networks
and Markov chains to model production lines, where the ma-
chines’ processing times follow certain probability distribu-
tions. Extensive literature exists on the applicability of these
models to the design and the analysis of production systems,
whose states are defined by the level of the buffers in the line
(see, e.g., Buzacott and Yao 1986a, 1986b; Bitran and Dasu
1992; Gershwin 1994). Nonetheless, a common practice in
productivity-related SPC, is to monitor the machine process-
ing times rather than the buffer levels themselves. One reason
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Figure 2. Score Statistics of Two E. coli Sequences of DNA-Spaced Reading Frames. The upper series represent promoter sequences (— Q—),
and the lower series represent nonpromoter sequences (- - - 2 - - -). Values of the score statistics are computed by the context tree model.

to do this is that the statistical behavior of buffer levels is com-
plex and highly nonlinear, and often cannot be described by a
known stochastic process, and thus is inadequate for traditional
SPC methods, as discussed in Section 4. On the other hand,
there are several reasons to monitor the buffer levels instead of
monitoring the machine processing-times. First, the buffer lev-
els are direct measures for the productivity, as opposed to the
processing times that are closely related, yet indirect measures
of productivity. Second, because defective parts are screened
out and do not enter the buffers, the buffer levels reflect not
only the machine processing times, but also some quality fea-
tures of produced parts, as well as the interactions among ma-
chines. These interactions are of particular importance in as-
sembly lines. Finally, the buffer levels are affected by a number
of machines that are located upstream and downstream of that
buffer: a low productivity of upstream machines will cause the
buffers to empty, whereas a low productivity of downstream
machine will cause the buffers to fill. Thus, instead of monitor-
ing every machine in the line, often it is sufficient to monitor
only a few buffers.

In Section 4 we apply the CSPC procedure to buffer moni-
toring of a production line. We show that the CSPC succeeds
in indicating inconsistencies of the production system, whereas
traditional SPC methods fail to do so.

The rest of the article is organized as follows. Section 2 in-
troduces the theoretical background for the context tree model
and the principles of its construction (with a detailed construc-
tion algorithm and a walk-through example deferred to App. B).
Section 3 develops the control limits for the CSPC methodology
based on the KL statistic and presents the CSPC methodology.
Section 4 illustrates the CSPC through a detailed numerical ex-
ample and compares it with conventional SPC methods, and
Section 5 concludes with some discussion.

2. MODELING PROCESS DEPENDENCE WITH
CONTEXT TREES

In this section we introduce the context tree model for state-
dependent data and the concepts of its construction algorithm
following the definitions and notations of Rissanen (1983) and
Weinberger et al. (1995). A detailed walk-through example pre-
senting the context tree construction is given in Appendix B.
(App. A includes a glossary of terms used in this article.)

Consider a sequence (string) of observations xN = x1, . . . , xN ,
with elements xt, t = 1, . . . ,N, defined over a finite symbol set,
X, of size d. In practice, this string can represent a realization
sequence of a discrete variable drawn from a finite set. Partic-
ularly, the discrete variable can be a queue length in a queuing
system, such as the number of parts in a buffer in a production
line. For a finite buffer capacity c, the “finite symbol set” (of
possible buffer levels) is X = {0,1,2, . . . , c} and d, the symbol-
set size, is thus equal to d = c + 1. For instance, the string
x6 = 1,0,1,2,3,3 repesents a sequence of six consecutive ob-
servations of the buffer level (number of parts) in a production
line with buffer capacity of c = 3.

A family of probability measures PN(xN), N = 0,1, . . . ,
is defined over the set {XN} of all stationary sequences of
length N, such that the marginality condition∑

x∈X

PN+1(x
Nx) = PN(xN) (1)

holds for all N, xNx = x1, . . . , xN, x, and P0(x0) = 1, where x0 is
the empty string. To simplify notation, the subindex is omitted,
so that PN(xN) ≡ P(xN).

One could opt to find a model that assigns the probability
measure (1). A possible finite-memory source model of the se-
quences just defined is the finite-state machine (FSM), which
assigns a probability to an observation in the string based on a
finite set of states. Hence the FSM is characterized by the tran-
sition function, which defines the state for the next symbol,

s(xN+1) = f
(
s(xN), xN+1

)
, (2)

where s(xN) ∈ � are the states with a finite state space |�| = S,
s(x0) = s0 is the initial state, and f : � × X → � is the state
transition map of the machine. The FSM is then defined by
S · (d − 1) conditional probabilities, the initial state s0, and the
transition function. The set of states of an FSM should satisfy
the requirement that the conditional probability to obtain a sym-
bol given the whole sequence be equal to the conditional prob-
ability to obtain the symbol given the past state, implying that

P(x|xN) = P
(
x|s(xN)

)
. (3)

A special case of FSM is the Markov process, which satisfies (2)
and is distinguished by the property that for a kth-order Markov
process, s(xN) = xN, . . . , xN−k+1. Thus, reversed strings of a
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fixed length k act as source states. This means that the condi-
tional probabilities of a symbol given all past observations (3)
depend only on a fixed number of observations k, which de-
fines the order of the process. However, even when k is small,
the requirement for a fixed order can result in an inefficient esti-
mation of the probability parameters, because some of the states
often depend on shorter strings than the process order. On the
other hand, increasing the Markov order to find a best fit results
in an exponential (noncontinuous) growth of the number of pa-
rameters, S = (d − 1)dk, and, consequently, of the number of
conditional probabilities to be estimated.

An alternative model to the Markovian is the context tree
model suggested by Rissanen (1983) for data-compression pur-
poses and modified later by Weinberger et al. (1995). The tree
presentation of a finite-memory source is advantageous, be-
cause states are defined as contexts—graphically represented by
branches in the context tree with variable length—hence pro-
vide more flexability in defining the number of parameters and
requires less estimation effort than those required for a Markov
chain presentation. The context tree is an irreducible set of con-
ditional probabilities of output symbols given their contexts.
The tree is conveniently estimated by the context algorithm. The
algorithm generates an asymptotically minimal tree fitting the
data (Weinberger et al. 1995). The attributes of the context tree
along with the ease of its estimation make it suitable for model-
generic SPC applications, as discussed later.

A context, s(xt), in which the “next” symbol in the string
xt+1 occurs is defined as the reversed string (we use the same
notation for contexts as for the FSM states, because here they
follow similar properties),

s(xt) = xt, . . . , xmax{0,t−k+1}, (4)

for some k ≥ 0, which is itself a function of the context, and
not necessarily identical for all strings (the case k = 0 is in-
terpreted as the empty string s0). The string is truncated be-
cause the symbols observed before xt−k+1 do not affect the oc-
currence probability of xt+1. For the set of optimal contexts,
� = {s : shortest contexts satisfying (3)}, k is selected to attain
the shortest contexts for which the conditional probability of
a symbol given the context is practically equal to the condi-
tional probability of that symbol given the whole data, that is,
nearly satisfying (3). Thus an optimal context, s ∈ �, acts as a
state of the context tree, and is similar to a state in a regular
Markov model of order k. However, unlike the Markov model,
the lengths of various contexts do not have to be equal, and k
does not need to be fixed such that it accounts for the maximum
context length. The variable context lengths in the context tree
model provide more flexibility and result in fewer parameters
that have to be estimated and, consequently, require less data to
identify the source.

Using the foregoing definitions, a description of the context
tree follows. A context tree is an irreducible set of probabilities
that fits the symbol sequence xN generated by a finite-memory
source. The tree assigns a distinguished optimal context for
each element in the string, and defines the probability of the
element, xt , given its optimal context. These probabilities are
used later for SPC—comparing sequences of observations and
identifying whether they are generated from the same source.

Figure 3. Illustration of a Context Tree With S = 5 Optimal Contexts
(bolded frame).

Graphically, the context tree is a d-ary tree that is not necessar-
ily complete and balanced. Its branches (arcs) are labeled by the
different symbol types. Each node contains a vector of d con-
ditional probabilities of all symbols, x ∈ X, given the respective
context (not necessarily optimal), which is represented by the
path from the root to that specific node. An optimal context,
s ∈ �, of an observation xt is represented by the path starting at
the root, with branch xt followed by branch xt−1, and so on, un-
til it reaches a leaf or a partial leaf (see Appendix B for a proper
definition of a partial leaf).

Figure 3 exemplifies a context tree constructed from a se-
quence of observed buffer levels in a production line. Be-
cause in this case the buffer has a finite capacity of c = 2,
there are d = 3 symbol types, where observation xt ∈ {0,1,2}
refers to the number of parts in the buffer at time t. Follow-
ing the context algorithm (which is detailed in App. B), S = 5
optimal contexts are found (marked by a bold frame); thus
the set of optimal contexts is a collection of reversed strings,
� = {0,2,102,1010,10101} (read from left to right). The con-
text 1010 is a partial leaf.

Consider the string x6 = 1,2,0,1,0,1, which is generated
from the tree source in Figure 3. Using the foregoing defi-
nitions, the optimal context of the next element, x7 = 0, is
s(x6) = 1,0,1,0, that is, following the reverse string from the
root until reaching an optimal context. Accordingly, the prob-
ability of x7 given the context is P(x7 = 0|s(x6)) = .33. For a
detailed example, see Appendix B.

Note that had we used a Markov chain model with maximal
dependency order, which is k = 5 (the longest branch in the
tree), then we would need to estimate the parameters of 35 =
243 states (instead of the five optimal contexts in the context
tree of Fig. 3), although most of them are redundant.

In practical SPC applications, one usually does not have an
a priori knowledge of the dependencies that need to be es-
timated. The conditional probabilities of symbols given the
optimal contexts, P(x|s), x ∈ X, s ∈ �, and the marginal prob-
abilities of optimal contexts, P(s), s ∈ �, are estimated by the
context algorithm. The joint probabilities of symbols and op-
timal contexts, P(x, s), x ∈ X, s ∈ �, are used to derive the
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CSPC control bounds and represent the context tree model. This
model might be only an approximated description of the real
generating source, but it is often appropriate for practical pur-
poses.

2.1 The Context Algorithm

In this section we briefly discuss the construction algorithm
of the context tree. The algorithm constructs a context tree from
a string of N symbols and estimates the marginal probabilities
of contexts and the conditional probabilities of symbols given
contexts. It contains four stages: (1) tree growing and counter
updating, (2) tree pruning, (3) optimal contexts selection, and
(4) estimation of the context tree probability parameters.

In the first stage, a counter context tree, Tt , 0 ≤ t ≤ N, is
grown up to a maximum depth m. (We distinguish between the
counter context tree, which results from the first two stages in
the algorithm, and the context tree, which contains the final set
of optimal contexts.) Each node in Tt contains d counters—one
per each symbol type. The counters, n(x|s), denote the condi-
tional frequencies of the symbols x ∈ X in the string xt given
the context s. Along with the tree growth, the counter values
n(x|s) are updated according to symbol occurrences. In the sec-
ond stage, the counter tree is pruned to acquire the shortest re-
versed strings to satisfy (3). In the third stage, the set of optimal
contexts � is obtained, based on the pruned counter tree. In the
last stage, the estimated conditional probabilities of symbols
given optimal contexts, P̂(x|s), x ∈ X, s ∈ �, and the estimated
marginal probabilities of optimal contexts, P̂(s), s ∈ �, are de-
rived. As noted in Appendix B, both P̂(x|s) and P̂(s) are asymp-
totically multinomial distributed and used to obtain the CSPC
control limits. The estimated joint probabilities of symbols and
optimal contexts, P̂(x, s) = P̂(x|s) · P̂(s), x ∈ X, s ∈ �, are then
derived and represent the context tree in its final form.

A convergence theorem for the context algorithm (Wein-
berger et al. 1995) guarantees a rapid convergence (of or-
der log t/t) of the estimated context tree to the “true” data-
generating tree source. The complexity of the context algorithm
is O(N log N) for an input string of length N (Rissanen 1999).
An extended version of the algorithm and a running example
for the context tree construction are presented in Appendix B.

3. CONTEXT-BASED STATISTICAL
PROCESS CONTROL

3.1 The Kullback–Leibler “Distance” Measure Between
Context Trees

Kullback (1959) proposed a measure for the relative “dis-
tance” or the discrimination between two probability mass
functions Q(x) and Q0(x),

K
(
Q(x),Q0(x)

) =
∑
x∈X

Q(x) log
Q(x)

Q0(x)
≥ 0. (5)

This measure, which became known as the KL measure, is pos-
itive for all nonidentical pairs of distributions and equals 0 iff
Q(x) = Q0(x) for every x. The KL measure is a convex func-
tion in the pair (Q(x),Q0(x)), and invariant under all one-to-one
transformations of the data. Although it is used as a distance

measure, it is not symmetric and does not satisfy the triangu-
lar inequality. Kullback (1959) has shown that the KL distance
(multiplied by a constant) between a d-category multinomial
distribution Q(x) and its estimated distribution Q̂(x) is asymp-
totically chi-squared distributed with d − 1 degrees of free-
dom (df):

2N · K
(

Q̂(x),Q(x)
) →

∑
x∈X

(n(x) − NQ(x))2

NQ(x)
∼ χ2

d−1, (6)

where N is the size of a sample taken from the population spec-
ified by Q(x), n(x) is the frequency of category (symbol type)
x in the sample,

∑
x∈X n(x) = N, and Q̂(x) = n(x)/N is the esti-

mated probability of category x.
The KL measure for the relative “distance” between two joint

probability mass functions, Q(x, y) and Q0(x, y), can be parti-
tioned into two terms, one term representing the distance be-
tween the conditioning random variable and the other repre-
senting the distance between the conditioned random variable
(Kullback 1959),

K
(
Q(x, y),Q0(x, y)

) =
∑
y∈S

Q(y) log
Q(y)

Q0(y)

+
∑
y∈S

Q(y)
∑
x∈X

Q(x|y) log
Q(x|y)
Q0(x|y) . (7)

In this article we implement the KL measure to detect the
relative distance between two context trees. Another distance
measure could be used, such as Jensen–Shannon (e.g., Ben-Gal
et al. 2002). The first tree, denoted by P̂i(x, s), represents the
monitored distribution of symbols and contexts, as estimated
from a string of length N at the monitoring time i = 1,2, . . . .
The second tree, denoted by P0(x, s), represents the “in control”
reference distribution of symbols and contexts. The reference
distribution is either known a priori or can be well estimated by
the context algorithm from a long string of observed symbols.

Following the minimum discrimination information (MDI)
principle (Alwan et al. 1998), the context algorithm generates a
monitored tree with a structure similar to that of the reference
tree. Maintaining the same structure for the monitored tree and
the reference tree enables direct use of the KL measure. New
observations are being collected and used for updating the mon-
itored tree counters and its statistics [(B.3) and (B.4) in App. B].
A significant change in the monitored process is manifested in
the tree counters and its resulting probabilities.

Using (7), the KL measure is decomposed for the monitored
context tree and the reference context tree (both represented by
the joint distributions of symbols and contexts) into two terms,

K
(

P̂i(x, s),P0(x, s)
) =

∑
s∈�

P̂i(s) log
P̂i(s)

P0(s)

+
∑
s∈�

P̂i(s)
∑
x∈X

P̂i(x|s) log
P̂i(x|s)
P0(x|s) , (8)

one term measuring the KL distance between the trees’ context
probabilities and the other measuring the KL distance between
the trees’ conditional probabilities of symbols given contexts.

Under the null hypothesis that the monitored tree P̂i(x, s) is
generated from the same source that generated P0(x, s), and us-
ing the multinomial approximation (6) together with (8), we
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derive the asymptotic probability density function of the KL
measure between P̂i(x, s) and P0(x, s); that is, for a long string,

K
(

P̂i(x, s),P0(x, s)
) →

1

2N
χ2

S−1 +
∑
s∈�

P̂i(s) · 1

2n(s)
χ2

d−1

= 1

2N
χ2

S−1 +
∑
s∈�

n(s)

N
· 1

2n(s)
χ2

d−1

= 1

2N
χ2

S−1 + 1

2N

∑
s∈�

χ2
d−1

= 1

2N
(χ2

S−1 + χ2
S(d−1)) = 1

2N
χ2

Sd−1, (9)

where n(s) is the frequency of an optimal context s ∈ � in the
string, S is the number of optimal contexts, d is the size of the
symbol set, and N is the size of the monitored string, which can
be determined either numerically or iteratively as exemplified
in Section 4.1. Thus the KL statistic for the joint distribution
of symbols and optimal contexts is asymptotically chi-squared
distributed with degrees of freedom depending on the number
of symbol types and the number of optimal contexts. (The de-
grees of freedom are doubled when using an estimated refer-
ence distribution.) This result is of utmost significance for the
development of control charts for state-dependent discrete data
streams based on the context tree model; Given a type I error
probability α, the control region for the KL statistic is given by

0 ≤ 2N · K
(

P̂i(x, s),P0(x, s)
) ≤ χ2

Sd−1,1−α. (10)

Thus the upper control limit (UCL) is the 100(1 −α) percentile
of the chi-squared distribution with (Sd − 1) degrees of free-
dom.

The control limit (10) has some appealing characteristics, as
follows:

1. It is a one-sided bound; if the KL value is larger than the
UCL, then the process is assumed to be “out of control”
for a given level of significance.

2. It lumps together all the parameters of the context tree, in
contrast with traditional SPC, in which each process pa-
rameter is controlled separately. Nevertheless, the KL sta-
tistic of the tree can be easily decomposed to monitor each
node in the context tree separately. This can be beneficial
when seeking the cause of an “out of control” signal.

3. If Sd is large enough, then the KL statistic is approx-
imately normally distributed. Hence conventional SPC
charts can be directly applied to monitor the proposed sta-
tistic.

A basic condition for applying the KL statistic to sample data
requires that P0(x|s) > 0, ∀x ∈ X, ∀s ∈ �. This constraint is sat-
isfied with the predictive approach [see (B.4) in App. B], where
all probability values assigned to any of the symbol types are
strictly positive, or with the nonpredictive approach [see (B.4)]
by defining 0/0 ≡ 0.

3.2 The Context-Based Statistical Process Control
Monitoring Procedure

The following steps briefly outline the CSPC monitoring pro-
cedure:

1. Obtain the reference context tree P0(x, s), either analyti-
cally or by using the context algorithm to a long string of
data.

2. For any monitoring time point, take a sample of se-
quenced observations of size N and generate the moni-
tored tree, P̂i(x, s). Each sequence is called a “run” and
contributes a monitoring point in the CSPC chart. Ad-
just the structure of the monitored tree such that it fits the
structure of the reference context tree. Update the coun-
ters of the monitored context tree by the values of the
string. Estimate the probability measures of the monitored
context tree using (B.3) and (B.4).

3. Compute the KL estimates, measuring the relative “dis-
tance” between the estimated monitored distributions
P̂i(x, s) and the reference distributions P0(x, s).

4. Plot the KL statistic value in the control chart against the
UCL found using (10). If the KL value is larger than the
UCL, this indicates that a significant change has likely oc-
curred in the process. Search for special-cause variability
and eliminate it.

5. For the next monitoring point, collect a new string of data,
increment i = i + 1, and go to step 2. If no data are avail-
able, then stop the monitoring stage.

4. NUMERIC EXAMPLE: BUFFER MONITORING
IN A PRODUCTION LINE

Consider a production line with K machines modeled as a
network of reliable service stations (M1,M2, . . . ,MK) and sep-
arated by buffer storages (B1,B2, . . . ,BK). Buffers carry parts
between two consecutive operations and have finite capacities.
Figure 4 presents a two-machine subsystem of a larger produc-
tion line, which can be decomposed through methods shown
by Gershwin (1994). The monitored subsystem consists of two
machines, Mk and Mk+1, and a buffer, Bk, with a finite capac-
ity, c.

We denote the probability that machine Mk has finished
processing a part during the inspection time interval by pk and
call it the production probability. Accordingly, qk = 1 − pk is
the probability that the machine has not finished its process dur-
ing the inspection time interval. We denote the buffer levels by
b, b = 0, . . . , c, and define them as the system states (a con-
ventional approach in production system analysis). Such a de-
finition of states is beneficial for several reasons: (1) The state
space is finite and well defined; (2) as seen later, a rigorous
monitoring of buffer levels can indicate whether there has been

Figure 4. A Subsystem of a Production Line of K Machines.
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a productivity change in the system—including changes in ma-
chines and buffers that are not part of the considered subsystem;
and (3) the transition probabilities between states can be com-
puted using known models, such as Markov chains. For exam-
ple, the first-order Markov model assumes that transition prob-
abilities depend only on the current buffer levels and is given
by the following equations (assuming that an empty/full buffer
will trigger an automatic filling/emptying process in the next
time interval):

P(xt+1 = b|xt =b −1)=P(0|c)=pkqk+1, b =1, . . . , c;
P(xt+1 = b|xt =b +1)=P(c|0)=pk+1qk, b =0, . . . , c −1;
P(xt+1 = b|xt =b)=1 −pkqk+1 −pk+1qk, b =0, . . . , c,

(11)
where xt is the observed buffer level at time t defining the sys-
tem state at time t.

In the remainder of the section, we use a Markov model of
the monitored subsystem. This example is chosen because it al-
lows a straightforward comparison between the known Markov
model and its equivalent context tree. Note that the context tree
in general is more appropriate than the Markovian to model
the considered production process, because various states (i.e.,
various buffer levels) might have a different dependency order.
For example, even when the production process is “in control,”
the middle (centered) buffer levels might follow a first-order
Markov chain, whereas higher and lower buffer levels might
follow high-order dependencies, which result from trends in
machine productivity.

The example contains three parts: (1) derivation of the “in
control” model for the production process by using the context
algorithm, (2) application of CSPC to the monitored variables
during “in control” and “out of control” phases of the produc-
tion system, and (3) comparison of the CSPC to Shewhart and
time series–based SPC methods.

4.1 Process Description and Derivation of the
“In Control” Model

Figure 5 presents the first-order Markov diagram of the
buffer levels obtained by specifying a buffer capacity, c = 4,
and production probabilities, pk = pk+1 = .8. This production
probability value (which can be estimated in practice by the
machine production rate) has been selected for two reasons.
First, it represents a relatively high production rate, which is
not too high for monitoring purposes, because anomalies at
higher production rates are easier to detect. Second, it guar-
antees a steady-state buffer level equal to 2 (the steady-state
probabilities are all equal to .2, as shown later in Fig. 6)—
exactly half of the buffer capacity. Substituting these produc-
tion probabilities in (11) yields a state transition probability
where P(xt+1 = b|xt = b − 1) = P(xt+1 = b|xt = b + 1) = .16;
P(xt+1 = b|xt = b) = .68, b = 0, . . . ,4.

Figure 5. State Transition Diagram for the Process.

To obtain a direct comparison with conventional SPC meth-
ods based on the normal distribution, the Markov model is also
defined as a restricted random walk, which is generated as fol-
lows:

1. A sequence of N values is generated from an iid normal
process, with mean µ0 = 0 and standard deviation σ0 = 1.

2. The string values are quantized by selecting two thresh-
olds (approximately −1 and 1) to obtain a sequence of
discrete random steps, zi ∈ {−1,0,1}, i = 1,2, . . . ,N,
which represent the change in the buffer level, where
P(zi = −1) = P(zi = 1) = .16 and P(zi = 0) = .68.

3. The cumulated sum of the independent random steps de-
fines an unconstrained random-walk process, which is
equivalent to a buffer level with infinite capacity.

4. Because the buffer capacity is finite, the absolute values
of the unconstrained random walk are restricted to a fi-
nite integer range: the modulo(5) function is applied to
the data to obtain a symbol set of constant size d = 5 of
the symbol set X = {0,1,2,3,4}.

The underlying normal distribution permit a straightforward
comparison to conventional SPC methods in later steps of the
example. Table 1 exemplifies a short realization of the generat-
ing process for N = 5.

An analytical context tree (Fig. 6) can be directly derived
from the Markov diagram in Figure 5. It is a single-level tree
with S = 5 contexts and a symbol set of d = 5. The root node
displays the steady-state probabilities of the Markov process,
and the contexts (the leafs) display the transition probabilities
given the context. This context tree represents the “in control”
reference distribution P0(x, s) of the process.

Because the analytical model is often unknown in practice,
let us illustrate the convergence of the estimated context tree,
P̂0(x, s), to the analytical context tree, P0(x, s) of Figure 6.
The context algorithm is applied to an increasing-length data
string, which is generated from the restricted random walk. As
the string grows, the constructed tree converges to the analyti-
cal model and the KL distance measure between the trees ap-
proaches 0. Figure 7 presents the asymptotic convergence of

Table 1. Feedback-Controlled Process Generation Example

x1 x2 x3 x4 x5

Step 1: iid normal values string −.4326 −1.6656 .1253 .2877 −1.1465
Step 2: Quantized string 0 −1 0 0 −1
Step 3: Cumulated sum string 0 −1 −1 −1 −2
Step 4: Restricted absolute string [modulo(5)] 0 4 4 4 3

TECHNOMETRICS, NOVEMBER 2003, VOL. 45, NO. 4



CONTEXT-BASED STATISTICAL PROCESS CONTROL 301

Figure 6. The Analytically Derived Single-Level Context Tree.

the KL “distance” between P̂0(x, s) and P0(x, s) as a function
of N, the string length. The bold line in Figure 7 indicates that
a longer input string results in an improved estimation of the
analytical distributions P0(x, s). It also shows the rapid con-
vergence of context algorithm to the “true” model. The dotted
line indicates the weighted UCL, χ2

(24,.9975)/(2 · N), as derived
from (10). Notice that for N > 325, the KL value is constantly
below the weighted UCL. Figure 7 can help an experimenter
determine the string length, N, required for a satisfactory esti-
mation of the reference “in control” context tree. In particular,
note that for approximately N < 300, the KL measure is in its
transient mode, whereas for 300 < N < 700, the KL measure
stabilizes and then attends a steady-state mode.

When the “in control” model is unknown, we suggest two
alternative procedures for determining the initial string length
required to estimate it. The first of these is an empirical ap-
proach: computing the convergence rate of estimated context
trees, which are constructed from an ever-growing input string,
until the convergence rate reaches its steady state-value. Recall
that context algorithm converges to the true tree model in a rate
of log N/N. The second approach is based on the multinomial
distribution characteristics. Bromaghin (1993) and May and
Johnson (1997) summarized several techniques to determine
the sample size needed for estimation of the multinomial pa-
rameters given a significance level or a specified interval width.
Their results might be used to determine analytically the initial
string length. As an example, Bromaghin (1993) suggested the

Figure 7. The KL Value (——) Between the Analytical Tree and
the Estimated Tree as a Function of the Input String Length N
(- - - UCL/(2∗N) limit value).

following upper bound for the sample size (based on a worst-
case scenario when the probability of a category equals .5):

N = 1 + int

(
max
x∈X

[
.25z2

(1−αx/2)

2
x

− z2
(1−αx/2)

])
, (12)

where N is the sample size, z2
(1−α) is the normal distribution per-

centile, αx is the significance level required for x ∈ X, x is the
interval width for x ∈ X,

∑
x∈X αx ≤ α, and int(·) represents the

integer function. Bromaghin provided a table of recommended
sample sizes based on (12) for the case of equal interval width
and equal significance levels, that is, x =  and αx = α/d,
∀x ∈ X. For example, for α = .05,  = .05 and d = 15 (the
number of categories), one obtains N0 = 853. This worst-case
approach may provide a simple rule of thumb for sample size
determination.

The estimated context tree model in Figure 8 was derived by
applying the context algorithm to a string of N = 1,000 obser-
vations determined by the results in Figure 7. The predictive
approach [see (B.4) in App. B] was used to compute the esti-
mated conditional probabilities P̂0(x|s), ∀x ∈ X, s ∈ TN .

To conclude, the context algorithm performed well with
respect to both the monitored tree structure and its esti-
mated probability measures. The algorithm accurately identi-
fied P̂0(x, s) as a single-level tree with S = 5 optimal contexts
(corresponding to the equivalent Markov states in Fig. 5). The
estimated conditional probabilities of symbols given contexts
were “close” to the analytical probabilities in terms of the KL
measure.

4.2 The Monitoring Stage

Based on the structure of the reference context tree, the UCL
was calibrated to obtain a type I error probability of α = .0025,
which corresponds to the typical choice of “3 sigma” in tradi-
tional SPC. Following (10), the UCL for the KL statistic was
determined to χ2

(S·d−1,1−α) = χ2
(24,.9975) = 48.

Two shift scenarios of the underlying normal distribution
were selected to illustrate the performance of CSPC monitor-
ing procedure:

1. Shifts in the standard deviation of the underlying normal
process, denoted by σ ′ = λ · σ0, where σ0 = 1, and λ tak-
ing the values of 1 (“in control”), .5, 1.5, and 2.

2. Shifts in the mean of the underlying normal process, de-
noted by µ′ = µ0 + δ · σ0, where µ0 = 0, σ0 = 1, and δ

varyies between 0 and 3.

During the monitoring stage of both scenarios, consecutive
strings of length of N = 125 data points were used to gener-
ate 50 monitored context trees, P̂i(x, s), i = 1,2, . . . ,50, for
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Figure 8. Estimated Reference Context Tree as a Result of the Implementation of Context Algorithm to N = 1,000 Observations.

each shifted process. A segment of 50 runs was used for a
clear graphical presentation, allowing us to sketch both the “in
control” and “out of control” charts on the same graph. String
lengths of N = 125 adhere to the chi-squared sampling princi-
ple suggested by Cochran (1952), requiring that at least 80% of
the sampling bins, in this case corresponding to the nonzero
conditional probabilities of symbols given optimal contexts,
Pi(x|s), contain at least four data points. Note that this string
length is much larger than sample sizes used in conventional
SPC methods (e.g., N = 5 in Shewhart charts). The estimation
of parameters of a model-generic method requires a larger sam-
ple size as the order of dependency increases. Larger sample
sizes can be excused in processes, such as the buffer-level mon-
itoring example considered here, where the sampling frequency
is high and relatively cheap. The proposed CSPC procedure
should be implemented primarily on such environments. New
statistics other than the KL might decrease the required string
length and will be investigated in future research.

Scenario 1: Shifts in the Standard Deviation of the Under-
lying Normal Distribution. The CSPC monitoring procedure
(outlined in Sec. 3.2) was applied to shifts in the standard devi-
ation of the underlying normal distribution. A total of 50 runs
with respective λ values of 1, 1.5, 2, and .5 were generated from
each shifted distribution. Monitored trees were constructed for

each run, and the KL estimates between each monitored tree
and the reference tree were computed and plotted on the con-
trol chart. Figures 9 and 10 present the control charts for all
the shifted processes. Based on the simulated results in these
figures, Table 2 presents the probabilities of the random-walk
steps due to the shift in the underlying standard deviation, the
corresponding type II errors, and the estimated ARL.

As can be seen, for the “in control” process (λ = 1), 100%
of the runs are below the UCL, which implies that the type I er-
ror probability of the CSPC procedure in this example equals 0.
For shifted processes, the rate of successful shift detection by
the CSPC is relative to the transition probability change. A stan-
dard deviation shift of λ = .5 decreased the transition probabil-
ity significantly, from .16 to .02, and resulted in 100% of the
runs being out of the control limits (Fig. 10). However, a stan-
dard deviation shift of λ = 1.5 increased the transition probabil-
ity from .16 to .25 and resulted in 20% of the runs being above
the UCL (Fig. 9, dotted line). The corresponding ARL = 5 is
based on approximately 625 observations and emphasizes the
large sample size that might be required by the CSPC in some
cases. Some ideas on how to shorten the CSPC’s sample size
are given in the conclusions section.

Time series–based SPC methods are designed to detect shifts
in either process means or the process standard deviation. As

Figure 9. Shifts in the Process Underlying Normal Standard Deviation, λ = 1,1.5,2. A portion of 50 runs is presented. ( , Std = 1 (in control);
- -+-, Std = 1.5 (out-control); , Std = 2 (out-control); ——, UCL.)
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Figure 10. Shift in the Process Underlying Normal Standard Deviation, λ = .5,1. A portion of 50 runs is presented. ( , Std = 1 (in-control);
, Std = .5 (out-control); ——, UCL.)

exemplified in the next scenario, the CSPC is capable of iden-
tifying both types of shifts by using a single monitoring chart,
because both modify the transition probabilities that affect the
KL estimates.

Scenario 2: Shifts in the Mean of the Underlying Normal Dis-
tribution. The CSPC performance in detecting mean shifts of
the underlying normal distribution, µ′ = µ0 + δ · σ0, is pre-
sented by the operating characteristics (OC) curve. The OC
curve plots the type II error (“in control” probability) as a func-
tion of the mean shift in standard deviations magnitude, denoted
by δ.

Figure 11 presents the OC curve for the KL estimates. The
runs were generated from the modified random-walk process,
where the mean shift of the underlying normal distribution var-
ied between 0 and 3 standard deviations (δ ∈ [0,3]). For com-
parison purposes, we also plotted an OC curve for a traditional
X statistic of an iid Gaussian process with a sample size N = 5.
Indeed, such a difference in the sample sizes, as well as the
fact that each statistic is applied to a different process, makes
the comparison problematic. However, as shown in the next

section, when traditional SPC methods (Shewhart and time se-
ries based) were applied to the same random-walk process, they
were incapable of monitoring this state-dependent process, re-
gardless of the sample size.

4.3 Comparison Between Context-Based and
Conventional Statistical Process Control Methods

In their seminal book, Box and Jenkins (1976) applied var-
ious time series models to discrete and nonlinear series, such
as monthly stock closing prices, yearly sunspot numbers, and
rounded-up yields of a chemical process. They showed that
simple ARIMA models, such as AR(1) or IMA(1,1), can ef-
fectively filter a wide range of autocorrelated processes, even if
those do not fit the model exactly. Apley and Shi (1999) pro-
posed applying simple ARIMA models to complex processes,
because these models require less estimation effort and can suc-
cessfully model a general autocorrelated process. Shore (2000)
demonstrated the capability and robustness of the Shewhart
method to monitoring processes that deviate from the normal-
ity assumptions. Nonetheless, as discussed in this section, all

Table 2. Performance of CSPC During Scenario with Respect to the ARL and Type I Error

CSPC performance
(ARL and type II error) ARL of S-chart

Standart Probability of the Test power 1 − β (benchmark)
Shift random-walk steps (number of Estimated ARL ARL

λ +1 0 −1 “out of control” runs) ARL N = 5 N = 125

1 .16 .68 .16 0% (0) ∞ 257.13 369.08
1.5 .25 .5 .25 20% (10) 5 6.96 1
2 .31 .38 .31 74% (37) 1.35 2.35 1
.5 .02 .976 .02 100% (50) 1 ∞ 1

NOTE: The last two columns present the ARL of a traditional S-chart for sample sizes N = 5 and N = 125.

TECHNOMETRICS, NOVEMBER 2003, VOL. 45, NO. 4



304 IRAD BEN-GAL, GAIL MORAG, AND ARMIN SHMILOVICI

Figure 11. The Operating Characteristics Curve for Mean Shifts.
—x— CSPC (Markov process N = 125); Shewhart (Gaussian i.i.d
N = 5).

of the abovementioned assumptions do not hold if the system
is highly nonlinear and the data depart significantly from the
assumed underlying model.

In this section we apply known SPC methods for dependent
data to the random-walk process of Section 4.1. We focus on the
performance of Shewhart- and ARIMA-based approaches sug-
gested for “general-purpose” monitoring. We show that all of
the conventional SPC methods failed to monitor the considered
process.

We started by implementing the SCC method, suggested by
Alwan and Roberts (1988), to the “in control” data. The SCC
monitors the residuals of an ARIMA(p,d,q) filtering. We used
the Statgraphics software package to obtain the best-fitting
ARIMA model (i.e., that with the lowest mean squared error)
describing the random-walk process. It turned out to be the fol-
lowing AR(2) model: x̂t = 1.948 + .406xt−1 − .0376xt−2.

The residuals of the AR(2) predictions, ε̂t = xt − x̂t, were ac-
cumulated in subgroups of size N = 5 and charted by the Stat-
graphics software. In linear processes, the residuals of the best-
fitting ARIMA filter should be approximately uncorrelated and
normally distributed (see, e.g., Apley and Shi 1999). Figure 12,
which presents the SCC of the “in control” data, indicates that

Figure 12. The SCC Control Chart for “In Control” Data.

these assumptions are violated here. More than 40% of the data
points in Figure 12, denoted by the star signs, are marked as
“out of control,” although the random-walk process remained
unchanged. This renders the SCC uninformative. The same sce-
nario was tested against various time series models, including
the AR(1), AR(2), and MA(1), which are often recommended
for general autocorrelated processes. The tests were performed
on both the residuals and the observations, using sample sizes of
N = 5 and N = 1 (i.e., individuals). The results of all tests were
unanimous: either a large number of points were marked as “out
of control,” although part of the process was “in control,” or a
large number of points were marked within the control limits
although the process was “out of control.” In both cases, it was
impossible to distinguish between “in control” data and “out of
control” data.

It should not be surprising that ARIMA charts are inadequate
in this example. The linear ARIMA series cannot model the
nonlinear state-dependent behavior of a Markov chain (even a
simple first-order chain). Using these models resulted in viola-
tion of the independence and the normality assumptions of the
residuals that are crucial for the success of the method.

Next, the Matlab software was used to obtain the X and the S
Shewhart charts for further investigation. To evaluate the She-
whart performance, half of the runs were generated from the “in
control” random walk, whereas the other runs were generated
from an “out of control” random walk. The latter process was
generated by shifting the mean of the underlying normal distri-
bution by 1 standard deviation, that is, where µ′ = µ0 + 1 · σ0.

Figures 13 and 14 present the X and the S charts of both
the “in control” data (solid line) and the “out of control” data
(dashed line). The estimated parameters of the underlying dis-

tribution using a sample size N = 5 are µ̂ = X = 3.036 and
σ̂ = S/c4 = .6148/.94 = .654, where c4 is the correction con-
stant to obtain an unbiased estimator of σ . Notice the high rate
of both types of statistical errors. The high type I error results
because neighboring observations in the random walk tend to
generate a small sample variance (high probability for a step
size of 0), whereas the variance between samples in the “in
control” string is large. The high type II error is due to the fact

that X remains approximately unchanged between the “in con-
trol” and “out of control” processes. Even though the process
standard deviation is slightly larger in the “out of control” case
(because the probability for a step size of +1 is greater), the
variance of the sample averages is smaller than in the “in con-
trol” case. The same phenomena were identified for shifts of
two standard deviations from the underlying process mean.

A reasonable assumption favoring the Shewhart method is
that due to the central limit theorem, using a larger sample
size would improve its performance. To check this assump-
tion, the experiment was repeated with a larger sample size

Table 3. Change in the Process Transition Probabilities
due to a Shift of δ = 1

Transition probabilities of the
Mean shift random-walk steps

δ +1 0 −1

0 (“in control”) .16 .68 .16
1 (“out of control”) .5 .49725 .00275
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Figure 13. Shewhart X Chart for “In Control” Data (µ0; —-+—) and “Out of Control” Data (µ = 1; - -!- -).

of N = 125, which equals the sample size used by the CSPC
to construct the context trees. Figures 15 and 16 present the
X and S charts of both the “in control” data (solid line) and
the “out of control” data (dashed line). The estimated para-

meters of the underlying distribution are µ̂ = X = 3.0129 and
σ̂ = S/c4 = 1.3765/.998 = 1.379.

As expected, the estimated standard deviation doubled due
to the increase in the sample size. Yet many samples generated
by the “in control” random walk were out of the control lim-
its. Paradoxically, the samples generated by the “out of control”
random walk seem to be steadier and more concentrated around
the central line in both charts. An explanation for this phenom-

Figure 14. Shewhart S Chart for “In Control” Data (µ0; —-+—) and “Out of Control” Data (µ = 1; - -!- -).
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Figure 15. Shewhart X Chart for N = 125 Sample Size “In Control” Data (µ0; —-+—) and “Out of Control” Data (µ = 1; - -!- -).

enon can be found by observing Table 3, which presents the
effect of the mean shift of the underlying normal distribution
on the transition probabilities of the random walk.

Note that the probability for a step size of +1 in the “out of
control” process is larger than that of the “in control” process,

whereas the probability for a step size of −1 is much smaller.
Consequently, the “out of control” process changes much faster
than the “in control” process. This results in a constant interven-
tion of the controller (modeled here by the modulo function),
keeping the process values within the fixed range and maintain-

Figure 16. Shewhart S Chart for N = 125 Sample “In Control” Data (µ0; —-+—) and “Out of Control” Data (µ = 1; - -!- -).
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ing a smaller variance of the sample averages. This phenom-
enon is presented by the small fluctuation of both the “out of
control” average in Figure 15 and the “out of control” standard
deviation in Figure 16, although the average standard deviation
is larger. In the “in control” case, where the step size probabil-
ity of +1 and −1 is equal, the controller’s intervention occurs
in fewer cases, and the process remains around the same values
for neighboring observations. This results in a greater fluctua-
tion between samples, as seen in Figures 13 and 14 presenting
the Shewhart SPC for a sample size of N = 5.

Although it has been shown that the Shewhart method can
sometimes be implemented on processes that deviate from its
underlying assumptions (see, e.g., Shore 2000), this is not the
case for state-dependent processes. Shewhart SPC is effective
only when changes in the transition probabilities of a state-
dependent process significantly affect the process mean. When
the Markovian property violates the independence assumption,
which is in the core of the center limit theorem, the Shewhart
charts may be unreliable.

5. CONCLUSIONS

The proposed CSPC extends the scope of conventional SPC
methods. It allows the operators to monitor varying-length
state-dependent processes as well as independent and linear
ones. The CSPC is more generic and less model-biased with re-
spect to time series modeling. We have shown that the ARIMA-
based SPC, which is often applied to complicated nonlinear
processes, fails in monitoring state-dependent processes. Us-
ing the model-generic CSPC does not come without a price,
however. The major drawback of CSPC is the relatively large
sample size required during the monitoring stage. Therefore, it
should be applied primarily to processes with high sampling
frequency, such as the buffer-level monitoring process consid-
ered here, or image data, as explained in Section 1.2. Note
that as frequent automated monitoring of industrial processes
becomes common, the amount of available observations in-
creases, whereas the dependence of these observations prevents
the implementation of traditional SPC methods. Future research
to decrease the required CSPC’s sample size includes the use
of new comparative statistics other than the KL, the clustering
of symbols to reduce the alphabet size, and the development of
an overlapping sampling scheme via a sliding window. These
developments might shorten the average run length once the
underlying process has been changed.

In addition, because the CSPC, as introduced here, is cur-
rently limited to discrete and single-dimensional processes, fu-
ture research can account for a continuous and multidimen-
sional signal space. As an intermediate solution, a clustering
algorithm could be used to find the optimal finite set of d clus-
ters. A web server for utilizing Context-Based SPC is available
at http:www.eng.tau.ac.il/∼bengal/.
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APPENDIX A: GLOSSARY

Term Notation Description

Context s A context in which the next symbol occurs
is defined as the reversed string s(xt ) =
xt , . . . ,xmax{0,t−k+1} for some k ≥ 0.

Context
algorithm

A context tree construction algorithm, sug-
gested by Rissanen (1983) and elaborated
by Weinberger et al. (1995).

Context-
based SPC

CSPC An SPC method for state-dependent data
based on context tree modeling.

Context-tree An irreducible set of probabilities that fits
the symbol sequence xN generated by a
FSM source. The tree assigns a distin-
guished optimal context for each symbol in
the string.

Finite-state
machine

FSM A finite-memory source model of the se-
quences defined earlier, characterized by
the function s(xN+1) = f (s(xN ),xN+1).

“In control”
reference
context tree

P0(x,s) The estimated version, denoted by
P̂0(x,s).

Monitored
context tree

P̂i (x,s) At monitoring point i .

Optimal
context

s ∈ � The shortest context for which the condi-
tional probability of a symbol given the con-
text is practically equal to the conditional
probability of that symbol given the whole
data.

Symbol x ∈ X A finite set of values that a process vari-
able can assume. For example, finite ca-
pacity buffer levels with values of X =
{0,1,2, . . . ,c}, where c is the buffer capac-
ity. The symbol size is denoted by |X | = d.

APPENDIX B: THE CONTEXT ALGORITHM

The context tree construction algorithm, termed the context
algorithm, is described here along with a walk-through ex-
ample. The walk-through example is based on the restricted
random-walk process that was presented in Section 4. The con-
text algortihm presented herafter is an extended version of the
algorithm Context introduced by Rissanen (1983) and modi-
fied by Weinberger et al. (1995) and Ben-Gal, Shmilovici, and
Morag (2001). The differences are mainly in stages 3 and 4 of
the algorithm.

The input of the algorithm is a sequence of observations
xN = x1, . . . , xN , with elements xt ∈ {0,1,2,3,4}, t = 1, . . . ,N,
defined over a finite symbol set, X, of size d = 5. The output of
the algorithm is the context tree TN that contains the set of op-
timal contexts, the estimated marginal probabilities of the op-
timal contexts, and the estimated conditional probabilities of
symbols given the optimal contexts. The algorithm stages fol-
low.

Stage 1: Tree Growing and Counter Updating

The first stage in the algorithm constructs the tree from its
root upward (for a downward version where the tree is pruned
recursively, see Ben-Gal et al. 2002):

Step 1.0. Start with the root as the initial tree, T0, where its
symbol counts n(x|s0) are initialized to 0.
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Figure B.1. A Portion of the Counter Context Tree for the Restricted Random-Walk Process for an Input String of N = 175 Observations (after
stage 1).

Step 1.1. Recursively, having constructed the tree Tt

from xt , read the next symbol xt+1. Traverse the tree along the
path defined by xt, xt−1, . . . , and for each node visited along
the path, increment the counter value n(x|s) of the symbol
xt+1 by 1 until reaching the tree’s current deepest node, say
xt, . . . , xt−l+1. If necessary, use an initial string preceding xt to
account for initial conditions.

Step 1.2. If the last updated count is at least 1, and l < m,
where m is the maximum depth, then create new nodes corre-
sponding to xt−r, l < r ≤ m, and initialize all its symbol counts
to 0 except for the symbol xt+1, whose count is set to 1. Re-
peat this step until the whole past string is mapped to a path
for the current symbol, xt+1, or until m is reached. Here r is
the depth of the new deepest node, reached for the current path,
after completing step 1.2.

Running Example. We demonstrate the construction of a
context tree for an example string, x6 = 4,4,4,3,3,2, from the
restricted random-walk process of Section 4. The string com-
prises a symbol set of d = 5, and its length is N = 6. Table B.1
presents the tree-growing and counter-update process. Note that
s is the reverse string, s = xt, xt−1, . . . .

Figure B.1 presents a portion of the counter context tree for
a string of N = 175 observations generated by the restricted
random-walk process described in Section 4.

Stage 2: Tree Pruning

The second stage in the algorithm prunes the tree to obtain
the optimal contexts of TN . This is performed by keeping the
deepest nodes w in TN that practically satisfy (3). The following
two pruning rules apply:

• Pruning rule 1. The depth of node w denoted by |w| is
bounded by a logarithmic ratio between the length of the
string and the number of symbol types, that is, |w| ≤
log(t + 1)/ log(d).

• Pruning rule 2. The information obtained from the descen-
dant nodes, sb, ∀b ∈ X, compared with the information ob-
tained from the parent node s, is larger than a “penalty”
cost for growing the tree (i.e., of adding a node). The
driving principle is to prune a descendant node having
a distribution of countervalues similar to that of the par-
ent node. In particular, calculate N(sb), the (ideal) code-
length difference of the descendant node sb, ∀b ∈ X,

N(sb) =
∑
x∈X

n(x|sb) log

(
P̂(x|sb)

P̂(x|s)
)

(B.1)

and then require that N(w) > C(d + 1) log(t + 1), where
logarithms are taken to base 2; C is the pruning constant
tuned to process requirements (with default C = 2 as sug-
gested in Weinberger et al. 1995). This process is extended
to the root node with N(x0) = ∞.

Running Example. Table B.2 presents the pruning stage for
the string, x6 = 4,4,4,3,3,2, for which the counter context
tree is constructed in Table B.1.

For the short string x6 = 4,4,4,3,3,2, the difference in dis-
tribution is not sufficient to support an extension of the tree to
two levels. Hence the level-one nodes are trimmed, and the de-
pendence of the process data is expressed by the root node.

Figure B.2 presents the pruned counter context tree con-
structed by applying the first two stages of the context algorithm
on a string containing N = 175 observations from the restricted
random-walk process of Section 4. The counter context tree for
this string is presented in Figure B.1.

Notice that the pruned tree of Figure B.2 is of depth 1. Re-
call that the restricted random-walk process of Section 4 is a
Markov chain of order 1 (see the state transition diagram in
Fig. 5). Therefore, the pruning stage of context algorithm iden-
tified the process–data dependence.

Figure B.2. The Pruned Counter Context Tree of the Restricted Random-Walk Process for an Input String of N = 175 Observations (after
stage 2).
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Table B.1. Tree Growing and Counter Updating Stage in Context Algorithm for String x6 = 4,4,4,3,3,2

Steps Tree Description

Step 0: T0 Initialization: The root node, λ, denotes the empty context.

Step 1: T1
x1 = 4

The only context for the first symbol is λ; the counter n(x = 4|λ)
was incremented by 1.

Step 2: T2
x2 = 4,4

The counters n(x = 4|λ) and n(x = 4|s = 4) are incremented
by 1. The node of the context s = 4 is added to accumulate the
counts of symbols given the context s = 4.

Step 3: T3
x3 = 4,4,4

The counter of symbol 4 is incremented by 1 in the nodes from
the root along the path defined by the past observations. In this
case, the counters n(x = 4|λ) and n(x = 4|s = 4) are incre-
mented by 1. A new node is added for the context s = 44, and
n(x = 4|s = 44) = 1.

Stage 4: T4
x4 = 4,4,4,3

The counters n(x = 3|λ), n(x = 3|s = 4) and n(x = 3|s = 44) are
incremented by 1, because the past contexts are s = λ, s = 4,
and s = 44. A new node is added for the context s = 444 of the
observation x4 = 3.

Stage 5:
x5 = . . . ,4,3,3

Add new nodes for the contexts s = 3, s = 34, and s = 344. Up-
date the counter of the symbol x = 3 from the root to the deepest
node on the path of past observations.

Stage 6:
x6 = . . . ,3,3,2

Update the counter of the symbol x = 2 from the root to the
deepest node on the path of past observations. Add the contexts
s = 33 and so on.
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Table B.2. Pruning Stage in the Context Algorithm for the String x6 = 4,4,4,3,3,2

Rule Tree Description

Rule 1 Rule 1: Maximum tree depth ≤ log(t)/ log(d) = log(6)/ log(5) = 1.11. The
maximum tree depth is of level 1. Thus all nodes of level 2 and below are
trimmed.

Rule 2 Rule 2: For the rest of the nodes in level one and the root, we apply trim-
ming rule 2. The threshold for C = 2 is 6(u) > 2(d + 1) log(t + 1) = 33.7.
For each of the nodes,

6(sb = λ3) = 0 + 0 + 1 · log
(

.5
1/6

)
+ 1 · log

(
.5

2/6

)
+ 0 = 2.17

and

6(sb = λ4) = 0 + 0 + 0 + 1 · log
(

1/3
2/6

)
+ 2 · log

(
2/3
3/6

)
= .83.

The code-length difference is below the threshold; hence the first level
nodes are trimmed.

Stage 3: Selection of Optimal Contexts

In this stage the set of optimal contexts, �, containing the
S shortest contexts satisfying (3) is specified. An optimal con-
text can be either a path to a leaf (a node with no descendants)
or a partial leaf in the tree. A partial leaf is defined for an in-
complete tree. It is a node that is not a leaf; however, for certain
symbol(s) its path defines an optimal context satisfying (3). [For
other symbols, (3) is not satisfied, and a descendant node(s) has
to be created.] The set of optimal contexts is specified by ap-
plying the following rule:

� =
{

s :
∑
x∈X

(
n(x|s) −

∑
b∈X

n(x|sb)

)
> 0

}
∀s ∈ Tt, (B.2)

which means that � contains only those contexts that are not
part of longer contexts. When the inequality in (B.2) turns into
equality, that context is fully contained in a longer context and
thus is not included in �. Note that in each level in the tree,
there is one context that does not belong to a longer context
due to the initial condition and thus does not satisfy (B.2). Such
inconsistency can be solved by introducing an initiating symbol
string, as suggested by Weinberger et al. (1995). In summary,
� contains all of the leaves in the tree and the partial leaves
satisfying (B.2) for certain symbols.

Running Example. Applying (B.2) to the pruned counter
context tree presented in Figure B.2 results with five optimal
contexts, � = {0,1,2,3,4}. All of the contexts in this case are
leaves. Note that the root node is not an optimal context, be-
cause it is fully contained in its descendant nodes.

Stage 4: Estimation of the Context Tree
Probability Parameters

This stage comprises three steps:

1. The probabilities of optimal contexts are estimated and
denoted by P̂(s), s ∈ �.

2. The conditional probabilities of symbols given the opti-
mal contexts are estimated and denoted by P̂(x|s), x ∈ X,
s ∈ �.

3. The estimated joint probabilities of symbols and optimal
contexts are calculated P̂(x, s), x ∈ X, s ∈ �.

Step 4.1. Given the set of optimal contexts and the pruned
counter tree, the probability of optimal contexts in the tree,
P̂(s), s ∈ �, is estimated by their frequency in the string,

P̂(s) = n(s)∑
s∈� n(s)

=
∑

x∈X(n(x|s) − ∑
b∈X n(x|sb))∑

s∈�

∑
x∈X(n(x|s) − ∑

b∈X n(x|sb))
,

∀x ∈ X, s ∈ �, (B.3)

where n(s) is the sum of the symbol counters in the correspond-
ing leaf (or partial leaf) belonging to the optimal context s and
not to a longer context, sb, b ∈ X. Each symbol in the string thus
belongs to one out of S optimal contexts, each of which con-
tains n(s) symbols. The allocation of symbols of a sufficiently
long string to distinctive optimal contexts is approximated by
the multinomial distribution.

Running Example. The estimated probabilities of optimal
contexts in Figure B.2 are

{
P̂(0), P̂(1), P̂(2), P̂(3), P̂(4)

}=
{

22

175
,

34

175
,

44

175
,

41

175
,

34

175

}
.

Step 4.2. Once the symbols in the string are partitioned
among S optimal contexts, the conditional probabilities of sym-
bol types given an optimal context are estimated by their fre-
quencies in the respective substring (Weinberger et al. 1995),

P̂(x|s) = n(x|s) − ∑
b∈X n(x|sb) + 1/ν

n(s) + d/ν
, ∀x,b ∈ X, s ∈ �,

(B.4)
where ν = 2 is the default value. The distribution of symbol
types in a given optimal context is thus approximated by an-
other multinomial distribution. Equation (B.4) with finite ν > 0
assigns positive probabilities to realizations that never appeared
in the sample string yet can occur in reality. We call this the pre-
dictive approach, which, similarly to some Bayesian approach,
assigns a nonzero a posteriori probabilty even though the a pri-
ori probability is 0.

An alternative approach is a nonpredictive approach, where
ν → ∞ and 0/0 ≡ 0. The choice from among these alternative
procedures depends both on the knowledge regarding the sys-
tem states and on the length of the string used to construct the
context tree. However, in the latter nonpredictive case, the num-
ber of degrees of freedom is adapted according to the number
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Figure B.3. The Context Tree Containing Vectors of Conditional Probabilities P(x |s) as Obtained from the Counter Context Tree in Figure B.2.
Optimal contexts are represented by the bolded frame.

of categories that are not equal to 0 (see, e.g., May and John-
son 1997), because the multinomial theory stands for nonzero
probability categories.

Running Example. Figure B.3 presents the estimated condi-
tional probabilities of symbols given contexts. These estimates
are generated by applying the nonpredictive approach to the
counter context tree presented in Figure B.2. For example, the
conditional probability of a symbol type x ∈{0,1,2,3,4}, given
the context s = 0, is estimated as P̂(x|0) = ( 14

22 , 3
22 ,0,0, 5

22 ).
The probabilities of symbols in the root are also presented for
general information.

Step 4.3. The joint probabilities of symbols and optimal
contexts that represent the context tree in its final form are eval-
uated P̂(x, s) = P̂(x|s) · P̂(s), x ∈ X, s ∈ �.

General Note. It is possible to consider nonsequential con-
texts. Rissanen (1983) proposed using a permutation function
to map the correct dependency order.

[Received April 2001. Revised May 2003.]
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